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Elements of machine learning systems
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Data Compute

Model

Bigger dataset requires larger model capacity. Which in 

turn puts demands on computing devices. The success of 

machine learning is a combination of all the three 

elements. Many recent advances requires us to push all 

three to their limits.

Today we will study two topics:

• How to reduce the memory consumption, so we can 

fit bigger models into a single device.

• How to scale up the training process



Recap: GPU memory hierarchy
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Global memory

Shared memory

block0

thread0

Registers

thread1

Registers …

block3

…

thread8

Shared memory: 64 KB per core

GPU memory(Global memory):

RTX3080  10GB

RTX3090  24GB

A100        40/80 GB



Sources of memory consumption
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input relu linear loss

linear-grad

label

loss-gradrelu-grad

linear

linear-grad

A simplified view of a typical computational graph for training, 

weights are omitted and implied in the grad steps.

Sources of memory consumption

• Model weights

• Optimizer states

• Intermediate activation values

Optimizer states

𝑤1 𝑤2 𝑢1 𝑢2



Techniques for memory saving inference only
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input relu linear losslinear

We only need O(1) memory for computing the final output of a N layer deep network

by cycling through two buffers



Activation memory cost for training
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Because the need to keep intermediate value around (checkpoint) for the gradient steps.

Training a 𝑁-layer neural network would require 𝑂 𝑁  memory. 

We will use the following simplified view to combine 

gradient and forward computation 

input relu linear loss

linear-grad

label

loss-gradrelu-grad

linear

linear-grad



Checkpointing techniques in AD
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Step 0:

Step 1:

Step 2:

• Only checkpoint colored nodes (step 0)

• Recompute the missing intermediate nodes in small segments (step 1, 2)



Sublinear memory cost
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For a 𝑁 layer neural network, 

if we checkpoint every 𝐾 layers

Forward computation

Gradient per segment

with re-computation

𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑠𝑡 = 𝑂
𝑁

𝐾
+ 𝑂(𝐾)

Checkpoint cost Re-computation cost

Pick 𝐾 = 𝑁



Outline

Programming abstractions

Parallel and distributed training

11



Parallel training problem
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Leverage multiple (GPU) devices that are 

possibly distributed over several worker 

nodes to train a model.



Data parallel training
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𝜃 ≔ 𝜃 −
𝛼

𝐵


𝑖=1

𝐵

∇𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖Loss function

Let each worker access
B

𝐾
 fraction of the minibatch, and run gradient computation then sum up 

all gradients together. 

Every worker runs the same replica of the model 



Allreduce abstraction

result = allreduce(float buffer[size])Interface

a = [1, 2, 3]    

b = comm.allreduce(a, op=sum)

a = [1, 0, 1]    

Worker 0 Worker 1

b = comm.allreduce(a, op=sum)

Running Example

assert b == [2, 2, 4] assert b == [2, 2, 4]

comm = communicator.create() comm = communicator.create()



Data parallel training via allreduce

data

label

Networks

Many replicas of the same graph run in parallel

linear-grad

linear-grad

loss-grad

loss

linear

linear
𝑤1

𝑤2

𝑔1

𝑔2

𝑔1

𝐺1 ← 𝑠𝑢𝑚(𝑔1𝑜𝑣𝑒𝑟 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠)

𝑤1 ← 𝑤1  − 𝛼𝐺1



Parameter server abstraction
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ps.push(index, gradient)

Interface

ps.pull(index)

Performs weight update on the 

server(key value store)



Data parallel training via parameter server
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data

label

Parameter server

Many replicas of the same graph run in parallel

linear-grad

linear-grad

loss-grad

loss

linear

linear
𝑤1

𝑤2

𝑔1

𝑔2

𝑔1

𝑤1 ← 𝑤1 − 𝛼 𝑠𝑢𝑚(𝑔1𝑜𝑣𝑒𝑟 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠)
𝑤1

Update result on remote server and 

send updated results back



Communication computation overlap
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data

label

linear-grad

linear-grad

loss-grad

loss

linear

linear
𝑤1

𝑤2

𝑔1

𝑔2

data

label

linear-grad

linear-grad

loss-grad

loss

linear

linear
𝑤1

𝑤2

𝑔1

𝑔2

Sync and update      𝑤1

Sync and update      𝑤2

Epoch T Epoch T + 1Synchronization

Many opportunities to continue computation while sending data over the network  



Model parallel training
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Worker0

Worker1

Worker2

Maps parts of the computation graph 

to workers 



Breaking up the computation for model 
parallelism

Label

Data

Worker0 Worker1



Breaking up the computation for model 
parallelism

Label

Data recvsend

sendrecv

Worker0 Worker1

Partition the graph, put send/recv pairs in the boundary



Tensor Parallelism (TP)

22

Y

=

X

@

W

Linear layer:
GPU0

GPU1

replicated 

Partitions tensor data across devices

How to feed to the next layer?



Allgather abstraction

result = allgather(float buffer[size])Interface

a = [1, 2]    

b = comm.allgather(a)

a = [3, 4]    

Worker 0 Worker 1

b = comm.allgather(a)

Running Example

assert b == [1, 2, 3, 4] assert b == [1, 2, 3, 4]

comm = communicator.create() comm = communicator.create()



Tensor Parallelism (TP)
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W

GPU0

GPU1

X

sharded 

allgather 

…

Allgather turns sharded to replicated view 

How to avoid allgather?

replicated replicated



Tensor Parallelism (TP)
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=

X

@+=

Y1 Y2Y

allreduce

W

Start with sharded X, generate partial result(Y1, Y2), then sum them together



Tensor Parallelism (TP)

26

W1

GPU0

GPU1

replicated sharded W2 partial results

A typical tensor parallel pipeline involves two matmuls

allreduce 



Parallelization summary

Model parallel training partition by parts in the computational graph.

Data parallel training partition by data.

In all cases, leverage the opportunities to overlap compute with communication.
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Advanced parallelization methods

There are more ways to parallelize a computational graph.

Some optional reference readings:

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.

Beyond Data and Model Parallelism for Deep Neural Networks.

GSPMD: General and Scalable Parallelization for ML Computation Graphs

FSDP: Fully Sharded Data Parallel
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