
10-414/714 – Deep Learning Systems:

Algorithms and Implementation

Training Large Models

Fall 2024

J. Zico Kolter and Tianqi Chen (this time)

Carnegie Mellon University

1

Outline

Techniques for memory saving

Parallel and distributed training

2

Outline

Techniques for memory saving

Parallel and distributed Training

3

Elements of machine learning systems

4

Data Compute

Model

Bigger dataset requires larger model capacity. Which in

turn puts demands on computing devices. The success of

machine learning is a combination of all the three

elements. Many recent advances requires us to push all

three to their limits.

Today we will study two topics:

• How to reduce the memory consumption, so we can

fit bigger models into a single device.

• How to scale up the training process

Recap: GPU memory hierarchy

5

Global memory

Shared memory

block0

thread0

Registers

thread1

Registers …

block3

…

thread8

Shared memory: 64 KB per core

GPU memory(Global memory):

RTX3080 10GB

RTX3090 24GB

A100 40/80 GB

Sources of memory consumption

6

input relu linear loss

linear-grad

label

loss-gradrelu-grad

linear

linear-grad

A simplified view of a typical computational graph for training,

weights are omitted and implied in the grad steps.

Sources of memory consumption

• Model weights

• Optimizer states

• Intermediate activation values

Optimizer states

𝑤1 𝑤2 𝑢1 𝑢2

Techniques for memory saving inference only

7

input relu linear losslinear

We only need O(1) memory for computing the final output of a N layer deep network

by cycling through two buffers

Activation memory cost for training

8

Because the need to keep intermediate value around (checkpoint) for the gradient steps.

Training a 𝑁-layer neural network would require 𝑂 𝑁 memory.

We will use the following simplified view to combine

gradient and forward computation

input relu linear loss

linear-grad

label

loss-gradrelu-grad

linear

linear-grad

Checkpointing techniques in AD

9

Step 0:

Step 1:

Step 2:

• Only checkpoint colored nodes (step 0)

• Recompute the missing intermediate nodes in small segments (step 1, 2)

Sublinear memory cost

10

For a 𝑁 layer neural network,

if we checkpoint every 𝐾 layers

Forward computation

Gradient per segment

with re-computation

𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑠𝑡 = 𝑂
𝑁

𝐾
+ 𝑂(𝐾)

Checkpoint cost Re-computation cost

Pick 𝐾 = 𝑁

Outline

Programming abstractions

Parallel and distributed training

11

Parallel training problem

12

Leverage multiple (GPU) devices that are

possibly distributed over several worker

nodes to train a model.

Data parallel training

13

𝜃 ≔ 𝜃 −
𝛼

𝐵

𝑖=1

𝐵

∇𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖Loss function

Let each worker access
B

𝐾
 fraction of the minibatch, and run gradient computation then sum up

all gradients together.

Every worker runs the same replica of the model

Allreduce abstraction

result = allreduce(float buffer[size])Interface

a = [1, 2, 3]

b = comm.allreduce(a, op=sum)

a = [1, 0, 1]

Worker 0 Worker 1

b = comm.allreduce(a, op=sum)

Running Example

assert b == [2, 2, 4] assert b == [2, 2, 4]

comm = communicator.create() comm = communicator.create()

Data parallel training via allreduce

data

label

Networks

Many replicas of the same graph run in parallel

linear-grad

linear-grad

loss-grad

loss

linear

linear
𝑤1

𝑤2

𝑔1

𝑔2

𝑔1

𝐺1 ← 𝑠𝑢𝑚(𝑔1𝑜𝑣𝑒𝑟 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠)

𝑤1 ← 𝑤1 − 𝛼𝐺1

Parameter server abstraction

16

ps.push(index, gradient)

Interface

ps.pull(index)

Performs weight update on the

server(key value store)

Data parallel training via parameter server

17

data

label

Parameter server

Many replicas of the same graph run in parallel

linear-grad

linear-grad

loss-grad

loss

linear

linear
𝑤1

𝑤2

𝑔1

𝑔2

𝑔1

𝑤1 ← 𝑤1 − 𝛼 𝑠𝑢𝑚(𝑔1𝑜𝑣𝑒𝑟 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠)
𝑤1

Update result on remote server and

send updated results back

Communication computation overlap

18

data

label

linear-grad

linear-grad

loss-grad

loss

linear

linear
𝑤1

𝑤2

𝑔1

𝑔2

data

label

linear-grad

linear-grad

loss-grad

loss

linear

linear
𝑤1

𝑤2

𝑔1

𝑔2

Sync and update 𝑤1

Sync and update 𝑤2

Epoch T Epoch T + 1Synchronization

Many opportunities to continue computation while sending data over the network

Model parallel training

19

Worker0

Worker1

Worker2

Maps parts of the computation graph

to workers

Breaking up the computation for model
parallelism

Label

Data

Worker0 Worker1

Breaking up the computation for model
parallelism

Label

Data recvsend

sendrecv

Worker0 Worker1

Partition the graph, put send/recv pairs in the boundary

Tensor Parallelism (TP)

22

Y

=

X

@

W

Linear layer:
GPU0

GPU1

replicated

Partitions tensor data across devices

How to feed to the next layer?

Allgather abstraction

result = allgather(float buffer[size])Interface

a = [1, 2]

b = comm.allgather(a)

a = [3, 4]

Worker 0 Worker 1

b = comm.allgather(a)

Running Example

assert b == [1, 2, 3, 4] assert b == [1, 2, 3, 4]

comm = communicator.create() comm = communicator.create()

Tensor Parallelism (TP)

24

W

GPU0

GPU1

X

sharded

allgather

…

Allgather turns sharded to replicated view

How to avoid allgather?

replicated replicated

Tensor Parallelism (TP)

25

=

X

@+=

Y1 Y2Y

allreduce

W

Start with sharded X, generate partial result(Y1, Y2), then sum them together

Tensor Parallelism (TP)

26

W1

GPU0

GPU1

replicated sharded W2 partial results

A typical tensor parallel pipeline involves two matmuls

allreduce

Parallelization summary

Model parallel training partition by parts in the computational graph.

Data parallel training partition by data.

In all cases, leverage the opportunities to overlap compute with communication.

27

Advanced parallelization methods

There are more ways to parallelize a computational graph.

Some optional reference readings:

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.

Beyond Data and Model Parallelism for Deep Neural Networks.

GSPMD: General and Scalable Parallelization for ML Computation Graphs

FSDP: Fully Sharded Data Parallel

28

Outline

Techniques for memory saving

Parallel and distributed training

29

	Default Section
	Slide 1: 10-414/714 – Deep Learning Systems: Algorithms and Implementation Training Large Models
	Slide 2: Outline

	Techniques for speedup and memory savingLow-level programming abstractionsLow-level programming abstractionsLow-level programming abstractions
	Slide 3: Outline
	Slide 4: Elements of machine learning systems
	Slide 5: Recap: GPU memory hierarchy
	Slide 6: Sources of memory consumption
	Slide 7: Techniques for memory saving inference only
	Slide 8: Activation memory cost for training
	Slide 9: Checkpointing techniques in AD
	Slide 10: Sublinear memory cost

	Parallel and distributed training
	Slide 11: Outline
	Slide 12: Parallel training problem
	Slide 13: Data parallel training
	Slide 14: Allreduce abstraction
	Slide 15: Data parallel training via allreduce
	Slide 16: Parameter server abstraction
	Slide 17: Data parallel training via parameter server
	Slide 18: Communication computation overlap
	Slide 19: Model parallel training
	Slide 20: Breaking up the computation for model parallelism
	Slide 21: Breaking up the computation for model parallelism
	Slide 22: Tensor Parallelism (TP)
	Slide 23: Allgather abstraction
	Slide 24: Tensor Parallelism (TP)
	Slide 25: Tensor Parallelism (TP)
	Slide 26: Tensor Parallelism (TP)
	Slide 27: Parallelization summary
	Slide 28: Advanced parallelization methods
	Slide 29: Outline

