
10-414/714 – Deep Learning Systems:
Algorithms and Implementation

Training Large Models

Fall 2022
J. Zico Kolter and Tianqi Chen (this time)

Carnegie Mellon University

1

Outline
Techniques for memory saving

Parallel and distributed training

2

Outline
Techniques for memory saving

Parallel and distributed Training

3

Elements of machine learning systems

4

Data Compute

Model
Bigger dataset requires larger model capacity. Which in
turn puts demands on computing devices. The success
of machine learning is a combination of all the three
elements. Many recent advances requires us to push all
three to their limits.

Today we will study two topics:
• How to reduce the memory consumption, so we

can fit bigger models into a single device.
• How to scale up the training process

Recap: GPU memory hierarchy

5

Global memory

Shared memory

block0

thread0

Registers

thread1

Registers …

block3

…

thread8

Shared memory: 64 KB per core

GPU memory(Global memory):

RTX3080 10GB
RTX3090 24GB
A100 40/80 GB

Sources of memory consumption

6

input relu linear loss

linear-grad

label

loss-gradrelu-grad

linear

linear-grad

A simplified view of a typical computational graph for training,
weights are omitted and implied in the grad steps.

Sources of memory consumption
• Model weights
• Optimizer states
• Intermediate activation values

Optimizer states

𝑤! 𝑤" 𝑢! 𝑢"

Techniques for memory saving inference only

7

input relu linear losslinear

We only need O(1) memory for computing the final output of a N layer deep network
by cycling through two buffers

Activation memory cost for training

8

Because the need to keep intermediate value around (checkpoint) for the gradient steps.
Training a 𝑁-layer neural network would require 𝑂 𝑁 memory.

We will use the following simplified view to combine
gradient and forward computation

input relu linear loss

linear-grad

label

loss-gradrelu-grad

linear

linear-grad

Checkpointing techniques in AD

9

Step 0:

Step 1:

Step 2:

• Only checkpoint colored nodes (step 0)
• Recompute the missing intermediate nodes in small segments (step 1, 2)

Sublinear memory cost

10

For a 𝑁 layer neural network,
if we checkpoint every 𝐾 layers

Forward computation

Gradient per segment
with re-computation

𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑠𝑡 = 𝑂
𝑁
𝐾

+ 𝑂(𝐾)

Checkpoint cost Re-computation cost

Pick 𝐾 = 𝑁

Outline
Programming abstractions

Parallel and distributed training

11

Parallel training problem

12

Leverage multiple (GPU) devices that are
possibly distributed over several worker
nodes to train a model.

Model parallel training

13

Worker0

Worker1

Worker2

Maps parts of the computation
graph to workers

Breaking up the computation for model parallelism

Label

Data

Worker0 Worker1

Breaking up the computation for model parallelism

Label

Data recvsend

sendrecv

Worker0 Worker1

Partition the graph, put send/recv pairs in the boundary

Data parallel training

16

𝜃 ≔ 𝜃 −
𝛼
𝐵&
!"#

$

∇%ℓ ℎ% 𝑥 ! , 𝑦 !Loss function

Let each worker access #
$

fraction of the minibatch, and run gradient computation then sum up
all gradients together.

Every worker runs the same replica of the model

Allreduce abstraction
result = allreduce(float buffer[size])Interface

a = [1, 2, 3]

b = comm.allreduce(a, op=sum)

a = [1, 0, 1]

Worker 0 Worker 1

b = comm.allreduce(a, op=sum)

Running Example

assert b == [2, 2, 4] assert b == [2, 2, 4]

comm = communicator.create() comm = communicator.create()

Data parallel training via allreduce

data

label

Networks

Many replicas of the same graph run in parallel

linear-grad

linear-grad

loss-grad

loss

linear

linear𝑤!

𝑤"

𝑔!

𝑔"

𝑔!

𝐺! ← 𝑠𝑢𝑚(𝑔!𝑜𝑣𝑒𝑟 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠)

𝑤! ← 𝑤! − 𝛼𝐺!

Parameter server abstraction

19

ps.push(index, gradient)

Interface

ps.pull(index)

Performs weight update on the
server(key value store)

Data parallel training via parameter server

20

data

label

Parameter server

Many replicas of the same graph run in parallel

linear-grad

linear-grad

loss-grad

loss

linear

linear𝑤!

𝑤"

𝑔!

𝑔"

𝑔!
𝑤! ← 𝑤! − 𝛼 𝑠𝑢𝑚(𝑔!𝑜𝑣𝑒𝑟 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠)𝑤!

Update result on remote server and
send updated results back

Communication computation overlap

21

data

label

linear-grad

linear-grad

loss-grad

loss

linear

linear𝑤!

𝑤"

𝑔!

𝑔"

data

label

linear-grad

linear-grad

loss-grad

loss

linear

linear𝑤!

𝑤"

𝑔!

𝑔"

Sync and update 𝑤!

Sync and update 𝑤"

Epoch T Epoch T + 1Synchronization

Many opportunities to continue computation while sending data over the network

Parallelization summary
Model parallel training partition by parts in the computational graph.

Data parallel training partition by data.

In all cases, leverage the opportunities to overlap compute with communication.

22

Advanced parallelization methods
There are more ways to parallelize a computational graph.

Some optional reference readings:

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.

Beyond Data and Model Parallelism for Deep Neural Networks.

GSPMD: General and Scalable Parallelization for ML Computation Graphs

23

Outline
Techniques for memory saving

Parallel and distributed training

24

