
10-414/714 – Deep Learning Systems:

Algorithms and Implementation

ML Refresher / Softmax Regression

Fall 2024

J. Zico Kolter and Tianqi Chen (this time)

Carnegie Mellon University

1

Outline

Basics of machine learning

Example: softmax regression

2

Outline

Basics of machine learning

Example: softmax regression

3

Machine learning as data-driven programming

Suppose you want to write a program

that will classify handwritten drawing of

digits into their appropriate category:

0,1,…,9

You could, think hard about the nature of

digits, try to determine the logic of what

indicates what kind of digit, and write a

program to codify this logic

(Despite being a reasonable coder, I

don’t think I could do this very well)

4

MNIST Dataset

The (supervised) ML approach: collect a training set of images with known labels

and feed these into a machine learning algorithm, which will (if done well),

automatically produce a “program” that solves this task

Machine learning as data-driven programming

5

Training data

(, 4)

(, 5)

(, 8)

⋮

Machine

learning

algorithm

Model ℎ
such that

ℎ ≈ 4

ℎ ≈ 5

ℎ ≈ 8

⋮

Three ingredients of a machine learning

algorithm

Every machine learning algorithm consists of three different elements:

1. The hypothesis class: the “program structure”, parameterized via a set of

parameters, that describes how we map inputs (e.g., images of digits) to

outputs (e.g., class labels, or probabilities of different class labels)

2. The loss function: a function that specifies how “well” a given hypothesis (i.e.,

a choice of parameters) performs on the task of interest

3. An optimization method: a procedure for determining a set of parameters

that (approximately) minimize the sum of losses over the training set

6

Outline

Basics of machine learning

Example: softmax regression

7

Multi-class classification setting

Let’s consider a k-class classification setting, where we have

• Training data: 𝑥 𝑖 ∈ ℝ𝑛, 𝑦 𝑖 ∈ {1, … , 𝑘} for 𝑖 = 1, … 𝑚

• 𝑛 = dimensionality of the input data

• 𝑘 = number of different classes / labels

• 𝑚 = number of points in the training set

Example: classification of 28x28 MNIST digits

• 𝑛 = 28 ⋅ 28 = 784

• 𝑘 = 10

• 𝑚 = 60,000

8

Linear hypothesis function

Our hypothesis function maps inputs 𝑥 ∈ ℝ𝑛 to 𝑘-dimensional vectors

ℎ: ℝ𝑛 → ℝ𝑘

where ℎ𝑖(𝑥) indicates some measure of “belief” in how much likely the label is to be

class 𝑖 (i.e., “most likely” prediction is coordinate 𝑖 with largest ℎ𝑖(𝑥)).

A linear hypothesis function uses a linear operator (i.e. matrix multiplication) for

this transformation

ℎ𝜃 𝑥 = 𝜃𝑇𝑥

for parameters 𝜃 ∈ ℝ𝑛×𝑘

9

Matrix batch notation

Often more convenient (and this is how you want to code things for efficiency) to

write the data and operations in matrix batch form

𝑋 ∈ ℝ𝑚×𝑛 =
− 𝑥 1 𝑇

−
⋮

− 𝑥 𝑚 𝑇
−

, 𝑦 ∈ {1, … , 𝑘}𝑚 =
𝑦 1

⋮
𝑦 𝑚

Then the linear hypothesis applied to this batch can be written as

ℎ𝜃 𝑋 = 𝑋𝜃 =
− 𝑥 1 𝑇

𝜃 −
⋮

− 𝑥 𝑚 𝑇
𝜃 −

=
− ℎ𝜃 𝑥 1 𝑇

−

⋮
−ℎ𝜃 𝑥𝑚 𝑇 −

10

Loss function #1: classification error

The simplest loss function to use in classification is just the classification error, i.e.,

whether the classifier makes a mistake a or not

ℓ𝑒𝑟𝑟 ℎ 𝑥 , 𝑦 = ቊ
0 if argmax𝑖 ℎ𝑖 𝑥 = 𝑦
1 otherwise

We typically use this loss function to assess the quality of classifiers

Unfortunately, the error is a bad loss function to use for optimization, i.e., selecting

the best parameters, because it is not differentiable

11

Loss function #2: softmax / cross-entropy loss

Let’s convert the hypothesis function to a “probability” by exponentiating and

normalizing its entries (to make them all positive and sum to one)

𝑧𝑖 = 𝑝 label = 𝑖 =
exp ℎ𝑖 𝑥

σ𝑗=1
𝑘 exp ℎ𝑗 𝑥

≡ normalize exp(ℎ 𝑥)

Then let’s define a loss to be the (negative) log probability of the true class: this is

called softmax or cross-entropy loss

ℓ𝑐𝑒 ℎ 𝑥 , 𝑦 = − log 𝑝 label = 𝑦 = − ℎ𝑦 𝑥 + log ෍

𝑗=1

𝑘

exp ℎ𝑗 𝑥

12

The softmax regression optimization problem

The third ingredient of a machine learning algorithm is a method for solving the

associated optimization problem, i.e., the problem of minimizing the average loss

on the training set

minimize
𝜃

1

𝑚
෍

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

For softmax regression (i.e., linear hypothesis class and softmax loss):

minimize
𝜃

1

𝑚
෍

𝑖=1

𝑚

ℓ𝑐𝑒 𝜃𝑇𝑥 𝑖 , 𝑦 𝑖

So how do we find Θ that solves this optimization problem?
13

Optimization: gradient descent

For a matrix-input, scalar output function 𝑓: ℝ𝑛×𝑘 → ℝ, the gradient is defined as

the matrix of partial derivatives

∇𝜃𝑓 𝜃 ∈ ℝ𝑛×𝑘 =

𝜕𝑓 𝜃

𝜕𝜃11
⋯

𝜕𝑓 𝜃

𝜕𝜃1𝑘

⋮ ⋱ ⋮
𝜕𝑓 𝜃

𝜕𝜃𝑛1
⋯

𝜕𝑓 𝜃

𝜕𝜃𝑛𝑘

Gradient points in the direction that most increases 𝑓 (locally)

14

Optimization: gradient descent

To minimize a function, the gradient descent algorithm proceeds by iteratively

taking steps in the direction of the negative gradient

𝜃 ≔ 𝜃 − 𝛼∇𝜃𝑓 𝜃

where 𝛼 > 0 is a step size or learning rate

15
𝛼 = 0.2 𝛼 = 0.42𝛼 = 0.05

𝜃1𝜃1𝜃1

𝜃
2

𝜃
2

𝜃
2

Stochastic gradient descent

If our objective (as is the case in machine learning) is the sum of individual losses,

we don’t want to compute the gradient using all examples to make a single update

to the parameters

Instead, take many gradient steps each based upon a minibatch (small partition of

the data), to make many parameter updates using a single “pass” over data

Repeat:
 Sample a minibatch of data 𝑋 ∈ ℝ𝐵×𝑛, 𝑦 ∈ {1, … , 𝑘}𝐵

Update parameters 𝜃 ≔ 𝜃 −
𝛼

𝐵
෍

𝑖=1

𝐵

∇𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

16

The gradient of the softmax objective

So, how do we compute the gradient for the softmax objective?

∇𝜃ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦 =?

Let’s start by deriving the gradient of the softmax loss itself: for vector ℎ ∈ ℝ𝑘

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ𝑖
=

𝜕

𝜕ℎ𝑖
−ℎ𝑦 + log ෍

𝑗=1

𝑘

exp ℎ𝑗

= −1{𝑖 = 𝑦} +
exp ℎ𝑖

σ𝑗=1
𝑘 exp ℎ𝑗

So, in vector form: ∇ℎℓ𝑐𝑒 ℎ, 𝑦 = 𝑧 − 𝑒𝑦, where 𝑧 = normalize exp h

17

The gradient of the softmax objective

So how do we compute the gradient ∇𝜃ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦 ?

• The chain rule of multivariate calculus … but the dimensions of all the

matrices and vectors get pretty cumbersome

Approach #1 (a.k.a. the right way): Use matrix differential calculus, Jacobians,

Kronecker products, and vectorization

Approach #2 (a.k.a. the hacky quick way that everyone actually does):

Pretend everything is a scalar, use the typical chain rule, and then rearrange /

transpose matrices/vectors to make the sizes work (and check your answer

numerically)

18

The slide I’m embarrassed to include…

Let’s compute the “derivative” of the loss:

𝜕

𝜕𝜃
ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦 =

𝜕ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦

𝜕𝜃𝑇𝑥

𝜕𝜃𝑇𝑥

𝜕𝜃
 = 𝑧 − 𝑒𝑦 𝑥 , where 𝑧 = normalize exp 𝜃𝑇𝑥

So to make the dimensions work…

∇𝜃ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦 ∈ ℝ𝑛×𝑘 = 𝑥 𝑧 − 𝑒𝑦
𝑇

Same process works if we use “matrix batch” form of the loss

∇𝜃ℓ𝑐𝑒 𝑋𝜃, 𝑦 ∈ ℝ𝑛×𝑘 = 𝑋𝑇 𝑍 − 𝐼𝑦 , 𝑍 = normalize exp 𝑋Θ

19

(𝑘-dimensional) (𝑛-dimensional)

Putting it all together

Despite a fairly complex derivation, we should highly just how simple the final

algorithm is

• Repeat until parameters / loss converges

1. Iterative over minibatches 𝑋 ∈ ℝ𝐵×𝑛, 𝑦 ∈ {1, … , 𝑘}𝐵 of training set

2. Update the parameters 𝜃 ≔ 𝜃 −
𝛼

𝐵
𝑋𝑇(𝑍 − 𝐼𝑦)

That is the entirety of the softmax regression algorithm

As you will see on the homework, this gets less than 8% error in classifying MNIST

digits, runs in a couple seconds

Up next time: neural networks (a.k.a. fancier hypothesis classes)
20

	Default Section
	Slide 1: 10-414/714 – Deep Learning Systems: Algorithms and Implementation ML Refresher / Softmax Regression
	Slide 2: Outline

	Basics of machine learning
	Slide 3: Outline
	Slide 4: Machine learning as data-driven programming
	Slide 5: Machine learning as data-driven programming
	Slide 6: Three ingredients of a machine learning algorithm

	Example: softmax regresssion
	Slide 7: Outline
	Slide 8: Multi-class classification setting
	Slide 9: Linear hypothesis function
	Slide 10: Matrix batch notation
	Slide 11: Loss function #1: classification error
	Slide 12: Loss function #2: softmax / cross-entropy loss
	Slide 13: The softmax regression optimization problem
	Slide 14: Optimization: gradient descent
	Slide 15: Optimization: gradient descent
	Slide 16: Stochastic gradient descent
	Slide 17: The gradient of the softmax objective
	Slide 18: The gradient of the softmax objective
	Slide 19: The slide I’m embarrassed to include…
	Slide 20: Putting it all together

