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What we have learned so far in this class

How to build a deep learning system that trains deep learning models efficiently on 

a standard computing environment (with GPUs).

Automatic differentiation

Deep learning modeling techniques 

Hardware accelerations and scale up

Normalization, initialization, optimization

4



Model deployment
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Transformer,

ResNet, LSTM
…

Needle Learned model

Deployment

Training

Bring learned models to

different application 

environments



Model deployment considerations

Application environment may bring restrictions (model size, no-python)

Leverage local hardware acceleration (mobile GPUs, accelerated CPU 

instructions, NPUs)

Integration with the applications (data preprocessing, post processing)
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Model exportation and deploy to inference 

engines 
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input relu linearlinear

𝑤1 𝑤2

Learned model

softmax

Computational graph and weights

Model formats recognized by 

inference engines ONNX, CoreML, TFLite

TensorRT ARMComputeLib TFLite

Backend frameworks

CoreML



Inference engine internals 
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input relu linearlinear

𝑤1 𝑤2

softmax Computational graph

Many inference engines are structured as computational graph interpreters

Allocate memories for intermediate activations

Traverse the graph and execute each of the operators

Usually only support a limited set of operators and programming models (e.g. dynamism)
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Limitation of library driven inference engine 

deployments

Need to build specialized libraries for each hardware backend

A lot of engineering efforts to optimization
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Machine learning compilation

ML 

Models

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation



Compiler representation of a model
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b@dot-add

@model(x, w, b) @dot-add(x, w, b)

functions

call

IRModule: a collection of interdependent functions

Also called intermediate representation (IR)



Example compilation flow: high-level transformations
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Example compilation flow: lowering to loop IR
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softmax

x w
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@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[j, x] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

return z 



Example compilation flow: low-level transformations

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[j, x] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

return Z 

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = b[j]

  for k in range(16):

    Y[i, j] += x[i, k] * w[j, x] 

return Y 

Low-level transformations



Example compilation flow: code generation and 

execution

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = b[j]

  for k in range(16):

    Y[i, j] += x[i, k] * w[j, x] 

return Y 

@softmax

x w

b@dot-add

dot-add

softmax

Compiled Op Functions

….

Runtime Execution

Graph Interpretation



High-level IR and optimizations

Computation graph(or graph-like) representation

Each node is a tensor operator(e.g. convolution)

Can be transformed (e.g. fusion) and annotated (e.g. 

device placement)

Most ML frameworks have this layer

dot

add

x

w

b

softmax

@model(x, w, b)



Low-level code optimizations

C = tvm.compute((m, n), 
 lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Specification

f or  yo i n r ange( 128) :
  f or  xo i n r ange( 128) :
    C[ yo* 8: yo* 8+8] [ xo* 8: xo* 8+8]  = 0
    f or  ko i n r ange( 128) :
      f or  y i  i n r ange( 8) :
        f or  x i  i n r ange( 8) :
          f or  k i  i n r ange( 8) :
            C[ yo* 8+yi ] [ xo* 8+xi ]  += 
               A[ ko* 8+ki ] [ yo* 8+yi ]  *  B[ ko* 8+ki ] [ xo* 8+xi ]

Low-level Program Variants



Elements of low-level loop representations

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[j, x] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

@dot-add(x, w, b) Multi-dimensional 

buffer

Array 

computation

Loop nests



Transforming loops:  splitting

for x in range(128):

  C[x] = A[x] + B[x] 

for xo in range(32):

  for xi in range(4):

     C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 

x = get_loop("x")
xo, xi = split(x, 4)

Code Transformation



Transforming loops: reorder

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)

Code Transformation

for xo in range(32):

  for xi in range(4):

     C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 

for xi in range(4):

  for xo in range(32):

    C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 



Transforming loops: thread binding

def gpu_kernel():

  C[threadId.x * 4 + blockIdx.x] = . . . 

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")

Code Transformation

for xi in range(4):

  for xo in range(32):

    C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 



Search via learned cost model

One configuration instance in 

the search space

Search Space
Search 

Planner
Code Generator

Training data

ML Cost Model

learning



Summary: elements of an automated ML compiler

Program representation

• Represent the program/optimization of interest, (e.g. dense tensor linear 

algebra, data structures)

Build search space through a set of transformations

• Cover common optimizations

• Find ways for domain experts to provide input

Effective search

• Cost models, transferability
Still an open research area!
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