
10-414/714 – Deep Learning Systems:

Algorithms and Implementation

Model Deployment

Fall 2024

J. Zico Kolter and Tianqi Chen (this time)

Carnegie Mellon University

1

Outline

Model deployment overview

Machine learning compilation

2

Outline

Model deployment overview

Machine learning compilation

3

What we have learned so far in this class

How to build a deep learning system that trains deep learning models efficiently on

a standard computing environment (with GPUs).

Automatic differentiation

Deep learning modeling techniques

Hardware accelerations and scale up

Normalization, initialization, optimization

4

Model deployment

5

Transformer,

ResNet, LSTM
…

Needle Learned model

Deployment

Training

Bring learned models to

different application

environments

Model deployment considerations

Application environment may bring restrictions (model size, no-python)

Leverage local hardware acceleration (mobile GPUs, accelerated CPU

instructions, NPUs)

Integration with the applications (data preprocessing, post processing)

6

Model exportation and deploy to inference

engines

7

input relu linearlinear

𝑤1 𝑤2

Learned model

softmax

Computational graph and weights

Model formats recognized by

inference engines ONNX, CoreML, TFLite

TensorRT ARMComputeLib TFLite

Backend frameworks

CoreML

Inference engine internals

8

input relu linearlinear

𝑤1 𝑤2

softmax Computational graph

Many inference engines are structured as computational graph interpreters

Allocate memories for intermediate activations

Traverse the graph and execute each of the operators

Usually only support a limited set of operators and programming models (e.g. dynamism)

Outline

Model deployment overview

Machine learning compilation

9

Limitation of library driven inference engine

deployments

Need to build specialized libraries for each hardware backend

A lot of engineering efforts to optimization

10

Machine learning compilation

ML

Models

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

Compiler representation of a model

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

functions

call

IRModule: a collection of interdependent functions

Also called intermediate representation (IR)

Example compilation flow: high-level transformations

Model
dot

add

x

w

b

softmax

@model(x, w, b)

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

import
High-level

transformations

Example compilation flow: lowering to loop IR

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[j, x]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

return z

Example compilation flow: low-level transformations

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[j, x]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

return Z

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = b[j]

 for k in range(16):

 Y[i, j] += x[i, k] * w[j, x]

return Y

Low-level transformations

Example compilation flow: code generation and

execution

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = b[j]

 for k in range(16):

 Y[i, j] += x[i, k] * w[j, x]

return Y

@softmax

x w

b@dot-add

dot-add

softmax

Compiled Op Functions

….

Runtime Execution

Graph Interpretation

High-level IR and optimizations

Computation graph(or graph-like) representation

Each node is a tensor operator(e.g. convolution)

Can be transformed (e.g. fusion) and annotated (e.g.

device placement)

Most ML frameworks have this layer

dot

add

x

w

b

softmax

@model(x, w, b)

Low-level code optimizations

C = tvm.compute((m, n),
 lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Specification

f or yo i n r ange(128) :
 f or xo i n r ange(128) :
 C[yo* 8: yo* 8+8] [xo* 8: xo* 8+8] = 0
 f or ko i n r ange(128) :
 f or y i i n r ange(8) :
 f or x i i n r ange(8) :
 f or k i i n r ange(8) :
 C[yo* 8+yi] [xo* 8+xi] +=
 A[ko* 8+ki] [yo* 8+yi] * B[ko* 8+ki] [xo* 8+xi]

Low-level Program Variants

Elements of low-level loop representations

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[j, x]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

@dot-add(x, w, b) Multi-dimensional

buffer

Array

computation

Loop nests

Transforming loops: splitting

for x in range(128):

 C[x] = A[x] + B[x]

for xo in range(32):

 for xi in range(4):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

x = get_loop("x")
xo, xi = split(x, 4)

Code Transformation

Transforming loops: reorder

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)

Code Transformation

for xo in range(32):

 for xi in range(4):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

for xi in range(4):

 for xo in range(32):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

Transforming loops: thread binding

def gpu_kernel():

 C[threadId.x * 4 + blockIdx.x] = . . .

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")

Code Transformation

for xi in range(4):

 for xo in range(32):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

Search via learned cost model

One configuration instance in

the search space

Search Space
Search

Planner
Code Generator

Training data

ML Cost Model

learning

Summary: elements of an automated ML compiler

Program representation

• Represent the program/optimization of interest, (e.g. dense tensor linear

algebra, data structures)

Build search space through a set of transformations

• Cover common optimizations

• Find ways for domain experts to provide input

Effective search

• Cost models, transferability
Still an open research area!

Outline

Deploying models to different backends

Machine learning compilation

25

	Default Section
	Slide 1: 10-414/714 – Deep Learning Systems: Algorithms and Implementation Model Deployment
	Slide 2: Outline

	Deploying models to different backends
	Slide 3: Outline
	Slide 4: What we have learned so far in this class
	Slide 5: Model deployment
	Slide 6: Model deployment considerations
	Slide 7: Model exportation and deploy to inference engines
	Slide 8: Inference engine internals

	machine learning compilation
	Slide 9: Outline
	Slide 10: Limitation of library driven inference engine deployments
	Slide 11: Machine learning compilation
	Slide 12: Compiler representation of a model
	Slide 13: Example compilation flow: high-level transformations
	Slide 14: Example compilation flow: lowering to loop IR
	Slide 15: Example compilation flow: low-level transformations
	Slide 16: Example compilation flow: code generation and execution
	Slide 17: High-level IR and optimizations
	Slide 18: Low-level code optimizations
	Slide 19: Elements of low-level loop representations
	Slide 20: Transforming loops: splitting
	Slide 21: Transforming loops: reorder
	Slide 22: Transforming loops: thread binding
	Slide 23: Search via learned cost model
	Slide 24: Summary: elements of an automated ML compiler
	Slide 25: Outline

