
10-414/714 – Deep Learning Systems:
Algorithms and Implementation

Future Directions

Fall 2021
J. Zico Kolter and Tianqi Chen

Carnegie Mellon University

1

Machine learning compiler for specialized hardware

2

Tensor
Compute Primitives

Unified Buffer
Acc

FIFO

Explicitly Managed
Memory Subsystem

TPUs

Specialized Hardware

3

semantics

C[0] += A[0] * B[0]

implementation

llvm.fmuladd.f32

Generic FMA

SIMD,
vector units

Specialized
tensor instructions

Nvidia Tensor Core and NPUs
semantics

for y, x, k in grid(16, 16, 16):

C[y, x] += A[y, k] * B[k, x]

implementation

nvvm.wmma.m16n16k16.mma.row.row.f32.f32

diagram

Scalar unit

semantics

for i in range(4):

C[i] += A[i] * B[i]

implementation

llvm.fmuladd.v4f32

diagram

Vector FMA

Heterogenous hardware backends
Specialized hardware comes with their own limitations.

We need to start to think about use a mix of them on a single SoC(e.g. Apple M2),
or over networks.

4

Tiny Machine Learning

5

Tiny Machine Learning

6

SRAM (200KB – 1MB)

CPU

Read-only Flash (1MB – 20MB)

DSP

A Typical Tiny Device

• Extremely limited memory resources

• Limited instruction set support(e.g.
no floating point units)

Specialized data types
We mostly only looked at float32(and a bit of int32) in our lectures

To get maximum benefits from the hardware acceleration, researchers are looking
into more specialized data types

• int8, int4, int1(binary neural network)

• float16, bfloat16 (customized floating points)

7

Automatic parallelization
We learnt about data parallel training and model parallel training

There is an active thread of research on generalized parallelization to scale up big
model training in an effective way.

8

Implicit Layers
Traditional layers in deep networks, like the ones you have implemented, perform
some kind of explicit computation mapping inputs to outputs

Instead, can define layers implicity, as the solution to some nonlinear algebraic or
differential equation

Can backprop analytically through these layers using implicit differentiation

9

Compute
y = f(x) yx

Find y such that
g(x, y) = 0 yx

Explicit layer Implicit layer

The learning/compute Pareto frontier
How much computation is “necessary” for
learning?

There is some curve that indications how
many operations (FLOPs, but also e.g. data
acceses, etc) are needed, in training, to
achieve a certain level of performance

But we have very little idea about what this
actually

10

Total Training Compute

Pe
rfo

rm
an

ce

Q&A
We’ve spent a lot of time in this class discussing how hardware and libraries have
enabled the advancement of deep learning. On the flip side to what degree do you
think these things could have limited the options being considered for deep
learning architectures? Do you think there are many ideas that could have been
very effective but just didn’t have efficient support/implementations available?

11

Q&A
I’m interested in the robustness and debuggability of the ML frameworks. While
working on assignments, we notice that different implementations of the ML
frameworks may return different results. How can we make the ML framework
more robust? The non-determinism of the ML framework makes it very hard to
debug. How do the existing ML frameworks help developers to identify bugs in
their code? Is there a way to improve the debuggability of ML frameworks?

12

Q&A
I was wondering how you would view the development of various ML chips /
accelerators?

Traditionally, we had CPU and GPU dominating the field and Nvidia keeps making
larger and faster GPUs that pushed the DL field. Then, FPGA was used to perform
inference tasks. Next, Google released TPU and many companies started to
develop their own chips. I can easily name quite a few chips from different
startups such as Habana, Cerebras, SambaNova, Tenstorrent, Graphcore, Groq,
etc. Also, phone chips (Apple) seem to be able to do inference task as well.

Do you think some of those chips may threaten the strength position of Nvidia’s
GPU? ….

13

Q&A
(Open questions to class)

14

