
10-414/714 – Deep Learning Systems:

Algorithms and Implementation

Neural Network Library Abstractions

Fall 2024

J. Zico Kolter and Tianqi Chen (this time)

Carnegie Mellon University

1

Outline

Programming abstractions

High level modular library components

2

Outline

Programming abstractions

High level modular library components

3

Programming abstractions

The programming abstraction of a framework defines the common ways to

implement, extend and execute model computations.

While the design choices may seem obvious after seeing them, it is useful to learn

about the thought process, so that:

• We know why the abstractions are designed in this way

• Learn lessons to design new abstractions.

4

Case studies

5

There are many frameworks being development along the way that we do not

have time to study: theano, torch7, mxnet, caffe2, chainer, jax …

Caffe1.0
TensorFlow 1.0 PyTorch

2014 2015 2016

Forward and backward layer interface

6

Example framework: Caffe 1.0

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

class Layer:
 def forward(bottom, top):
 pass

 def backward(top,
 propagate_down,
 bottom):
 pass

Defines the forward computation and backward(gradient) operations

Used in cuda-convenet (the AlexNet framework)

Early pioneer: cuda-convnet

Computational graph and declarative

programming

7

Example framework: Tensorflow 1.0

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

import tensorflow as tf

v1 = tf.Variable()
v2 = tf.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

sess = tf.Session()
value4 = sess.run(v4, feed_dict={v1: numpy.array([1]})

First declare the computational graph

Then execute the graph by feeding input value

Early pioneer: Theano

Imperative automatic differentiation

8

Example framework: PyTorch (needle:)

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

import needle as ndl

v1 = ndl.Tensor([1])
v2 = ndl.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

if v4.numpy() > 0.5:
 v5 = v4 * 2
else:
 v5 = v4
v5.backward()

Executes computation as we construct the computational graph

Allow easy mixing of python control flow and construction

Early pioneer: Chainer

Discussions

What are the pros and cons of each programming abstraction?

9

Outline

Programming abstractions

High level modular library components

10

Elements of Machine Learning

11

1. The hypothesis class:

2. The loss function:

3. An optimization method: 𝜃 ≔ 𝜃 −
𝛼

𝐵

𝑖=1

𝐵

∇𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

𝑥 ℎ𝜃 𝑥

𝑙(ℎ𝜃 𝑥 , 𝑦) = −ℎ𝑦 𝑥 + log

𝑗=1

𝑘

exp ℎ𝑗 𝑥

Question: how do they translate to modular components in code?

Deep learning is modular in nature

12

𝑥 Residual Block Residual Block Residual Block Linear
Softmax

CrossEntropy

Linearℎ1 ReLU
+

Multi-layer Residual Net

Residual block

ℎ1

𝑤1

ℎ3

matmul

transpose

ℎ2

Linear

ℎ1 ℎ2

max

0

ReLU

Linear ℎ2

Residual Connections

13One of the most well-cited paper

ResNetV2

nn.Module: Compose Things Together

14

ℎ1

𝑤1

ℎ3

matmul

transpose

ℎ2

Linear

Key things to consider:

• For given inputs, how to compute outputs

• Get the list of (trainable) parameters

• Ways to initialize the parameters

Tensor in, tensor out

Linearℎ1 ReLU
+

Residual block

Linear ℎ2

Loss functions as a special kind of module

15

Softmax

CrossEntropy
𝑙(ℎ𝜃 𝑥 , 𝑦) = −ℎ𝑦 𝑥 + log

𝑗=1

𝑘

exp ℎ𝑗 𝑥ℎ 𝑥 𝑙

𝑦 Scalar value

Questions

• How to compose multiple objective functions together?

• What happens during inference time after training?

Tensor in, scalar out

Optimizer

16

𝑥 Residual Block Residual Block Residual Block Linear
Softmax

CrossEntropy

Model

𝑤1 𝑤2 𝑤3 𝑤4

𝑤𝑖 ← 𝑤𝑖 − 𝛼𝑔𝑖

• Takes a list of weights from the model perform steps of optimization

• Keep tracks of auxiliary states (momentum)

SGD

𝑢𝑖 ← 𝛽𝑢𝑖 + 1 − 𝛽 𝑔𝑖

𝑤𝑖 ← 𝑤𝑖 − 𝛼𝑢𝑖

SGD with momentum

𝑢𝑖 ← 𝛽1𝑢𝑖 + 1 − 𝛽1 𝑔𝑖

𝑣𝑖 ← 𝛽2𝑣𝑖 + 1 − 𝛽2 𝑔𝑖
2

𝑤𝑖 ← 𝑤𝑖 − 𝛼𝑢𝑖/(𝑣𝑖
1/2

+ 𝜖)

Adam

Regularization and optimizer

Two ways to incorporate regularization:

• Implement as part of loss function

• Directly incorporate as part of optimizer update

17

𝑤𝑖 ← (1 − 𝛼𝜆) 𝑤𝑖−𝛼𝑔𝑖SGD with weight decay (𝑙2 regularization)

Initialization

Initialization strategy depends on the module being involved and the type of the

parameter. Most neural network libraries have a set of common initialization

routines

• weights: uniform, order of magnitude depends on input/output

• bias: zero

• Running sum of variance: one

Initialization can be folded into the construction phase of a nn.module.

18

Data loader and preprocessing

19

Dataset Random Rotate
Random Resize

and Crop

ModelData loading and augmentation pipeline

We often preprocess (augment) the dataset by randomly shuffle and
transform the input

Data augmentation can account for significant portion of prediction
accuracy boost in deep learning models

Data loading and augmentation is also compositional in nature

Deep learning is modular in nature

20

Data loader and

preprocessing

nn.Module to

compose the model
nn.Module to build

loss functions

Optimizer

Parameters and gradients

data hypothesis loss

Initialization

Discussions

What are other possible examples of modular components?

21

Revisit programming abstraction

22

class Layer:
 def forward(bottom, top):
 pass

 def backward(top,
 propagate_down,
 bottom):
 pass

Example framework: Caffe 1.0

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

Couples gradient computation with the module composition.

Revisit programming abstraction

23

Example framework: PyTorch (needle:)

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

import needle as ndl

v1 = ndl.Tensor([1])
v2 = ndl.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

Two levels of abstractions

• Computational graph abstraction on Tensors, handles AD

• High level abstraction to handle modular composition

Outline

Programming abstractions

High level modular library components

24

	Default Section
	Slide 1: 10-414/714 – Deep Learning Systems: Algorithms and Implementation Neural Network Library Abstractions
	Slide 2: Outline

	Low-level programming abstractionsLow-level programming abstractionsLow-level programming abstractionsLow-level programming abstractions
	Slide 3: Outline
	Slide 4: Programming abstractions
	Slide 5: Case studies
	Slide 6: Forward and backward layer interface
	Slide 7: Computational graph and declarative programming
	Slide 8: Imperative automatic differentiation
	Slide 9: Discussions

	high level library modules
	Slide 10: Outline
	Slide 11: Elements of Machine Learning
	Slide 12: Deep learning is modular in nature
	Slide 13: Residual Connections
	Slide 14: nn.Module: Compose Things Together
	Slide 15: Loss functions as a special kind of module
	Slide 16: Optimizer
	Slide 17: Regularization and optimizer
	Slide 18: Initialization
	Slide 19: Data loader and preprocessing
	Slide 20: Deep learning is modular in nature
	Slide 21: Discussions
	Slide 22: Revisit programming abstraction
	Slide 23: Revisit programming abstraction
	Slide 24: Outline

