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Programming abstractions

The programming abstraction of a framework defines the common ways to 

implement, extend and execute model computations.

While the design choices may seem obvious after seeing them, it is useful to learn 

about the thought process, so that:

• We know why the abstractions are designed in this way

• Learn lessons to design new abstractions.
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Case studies
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There are many frameworks being development along the way that we do not 

have time to study: theano, torch7, mxnet, caffe2, chainer, jax …

Caffe1.0
TensorFlow 1.0 PyTorch

2014 2015 2016



Forward and backward layer interface
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Example framework: Caffe 1.0 
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class Layer:
 def forward(bottom, top):
        pass

 def backward(top, 
                 propagate_down,
                 bottom):
        pass

Defines the forward computation and backward(gradient) operations

Used in cuda-convenet (the AlexNet framework)

Early pioneer: cuda-convnet



Computational graph and declarative 

programming
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Example framework: Tensorflow 1.0 
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import tensorflow as tf

v1 = tf.Variable()
v2 = tf.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

sess = tf.Session()
value4 = sess.run(v4, feed_dict={v1: numpy.array([1]})

First declare the computational graph

Then execute the graph by feeding input value

Early pioneer: Theano



Imperative automatic differentiation
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Example framework: PyTorch (needle:)
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import needle as ndl

v1 = ndl.Tensor([1])
v2 = ndl.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

if v4.numpy() > 0.5:
    v5 = v4 * 2
else:
    v5 = v4
v5.backward()

Executes computation as we construct the computational graph

Allow easy mixing of python control flow and construction

Early pioneer: Chainer



Discussions

What are the pros and cons of each programming abstraction?
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Elements of Machine Learning
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1. The hypothesis class: 

2. The loss function: 

3. An optimization method: 𝜃 ≔ 𝜃 −
𝛼

𝐵


𝑖=1

𝐵

∇𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

𝑥 ℎ𝜃 𝑥

𝑙(ℎ𝜃 𝑥 , 𝑦) = −ℎ𝑦 𝑥 + log 

𝑗=1

𝑘

exp ℎ𝑗 𝑥

Question: how do they translate to modular components in code?



Deep learning is modular in nature
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𝑥 Residual Block Residual Block Residual Block Linear
Softmax

CrossEntropy

Linearℎ1 ReLU
+

Multi-layer Residual Net

Residual block

ℎ1

𝑤1

ℎ3

matmul

transpose

ℎ2

Linear

ℎ1 ℎ2

max

0

ReLU

Linear ℎ2



Residual Connections

13One of the most well-cited paper

ResNetV2



nn.Module: Compose Things Together
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ℎ1

𝑤1

ℎ3

matmul

transpose

ℎ2

Linear

Key things to consider:

• For given inputs, how to compute outputs

• Get the list of (trainable) parameters

• Ways to initialize the parameters

Tensor in, tensor out

Linearℎ1 ReLU
+

Residual block

Linear ℎ2



Loss functions as a special kind of module
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Softmax

CrossEntropy
𝑙(ℎ𝜃 𝑥 , 𝑦) = −ℎ𝑦 𝑥 + log 

𝑗=1

𝑘

exp ℎ𝑗 𝑥ℎ 𝑥 𝑙

𝑦 Scalar value

Questions

• How to compose multiple objective functions together?

• What happens during inference time after training? 

Tensor in, scalar out



Optimizer
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𝑥 Residual Block Residual Block Residual Block Linear
Softmax

CrossEntropy

Model

𝑤1 𝑤2 𝑤3 𝑤4

𝑤𝑖 ← 𝑤𝑖 − 𝛼𝑔𝑖

• Takes a list of weights from the model perform steps of optimization 

• Keep tracks of auxiliary states (momentum)

SGD

𝑢𝑖 ← 𝛽𝑢𝑖 + 1 − 𝛽 𝑔𝑖

𝑤𝑖 ← 𝑤𝑖  − 𝛼𝑢𝑖

SGD with momentum

𝑢𝑖 ← 𝛽1𝑢𝑖 + 1 − 𝛽1 𝑔𝑖

𝑣𝑖 ← 𝛽2𝑣𝑖 + 1 − 𝛽2 𝑔𝑖
2

𝑤𝑖 ← 𝑤𝑖  − 𝛼𝑢𝑖/(𝑣𝑖
1/2

+ 𝜖)

Adam



Regularization and optimizer

Two ways to incorporate regularization:

• Implement as part of loss function

• Directly incorporate as part of optimizer update
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𝑤𝑖 ← (1 − 𝛼𝜆) 𝑤𝑖−𝛼𝑔𝑖SGD with weight decay (𝑙2 regularization)



Initialization

Initialization strategy depends on the module being involved and the type of the 

parameter. Most neural network libraries have a set of common initialization 

routines

• weights: uniform, order of magnitude depends on input/output

• bias: zero

• Running sum of variance: one

Initialization can be folded into the construction phase of a nn.module.
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Data loader and preprocessing
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Dataset Random Rotate
Random Resize 

and Crop

ModelData loading and augmentation pipeline

We often preprocess (augment) the dataset by randomly shuffle and 
transform the input

Data augmentation can account for significant portion of prediction 
accuracy boost in deep learning models

Data loading and augmentation is also compositional in nature



Deep learning is modular in nature
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Data loader and 

preprocessing

nn.Module to 

compose the model
nn.Module to build 

loss functions

Optimizer

Parameters and gradients

data hypothesis loss

Initialization



Discussions

What are other possible examples of modular components?
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Revisit programming abstraction 

22

class Layer:
 def forward(bottom, top):
        pass

 def backward(top, 
                 propagate_down,
                 bottom):
        pass

Example framework: Caffe 1.0 

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

Couples gradient computation with the module composition.



Revisit programming abstraction
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Example framework: PyTorch (needle:)

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+
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import needle as ndl

v1 = ndl.Tensor([1])
v2 = ndl.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

Two levels of abstractions

• Computational graph abstraction on Tensors, handles AD

• High level abstraction to handle modular composition
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