
10-414/714 – Deep Learning Systems: 
Algorithms and Implementation

Neural Network Library Abstractions

Fall 2021
J. Zico Kolter and Tianqi Chen (this time) 

Carnegie Mellon University

1



Outline
Programming abstractions

High level modular library components

2



Outline
Programming abstractions

High level modular library components

3



Programming abstractions
The programming abstraction of a framework defines the common ways to 
implement, extend and execute model computations.

While the design choices may seem obvious after seeing them, it is useful to learn 
about the thought process, so that:

• We know why the abstractions are designed in this way

• Learn lessons to design new abstractions.

4



Case studies

5

There are many frameworks being development along the way that we do not 
have time to study: theano, torch7, mxnet, caffe2, chainer, jax …

Caffe1.0 TensorFlow 1.0 PyTorch

2014 2015 2016



Forward and backward layer interface

6

Example framework: Caffe 1.0 

𝑣!

𝑣"

𝑣#

𝑣$

exp

×

+

1

class Layer:
def forward(bottom, top):

pass

def backward(top, 
propagate_down,
bottom):

pass

Defines the forward computation and backward(gradient) operations

Used in cuda-convenet (the AlexNet framework)

Early pioneer: cuda-convnet



Computational graph and declarative programming

7

Example framework: Tensorflow 1.0 

𝑣!

𝑣"

𝑣#

𝑣$

exp

×

+

1

import tensorflow as tf

v1 = tf.Variable()
v2 = tf.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

sess = tf.Session()
value4 = sess.run(feed_dict={v1: numpy.array([1]})

First declare the computational graph

Then execute the graph by feeding input value
Early pioneer: Theano



Imperative automatic differentiation

8

Example framework: PyTorch (needle:)

𝑣!

𝑣"

𝑣#

𝑣$

exp

×

+

1

import needle as ndl

v1 = ndl.Tensor([1])
v2 = ndl.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

if v4.numpy() > 0.5:
v5 = v4 * 2

else:
v5 = v4

v5.backward()

Executes computation as we construct the computational graph
Allow easy mixing of python control flow and construction

Early pioneer: Chainer



Discussions
What are the pros and cons of each programming abstraction?

9



Outline
Programming abstractions

High level modular library components

10



Elements of Machine Learning

11

1. The hypothesis class: 

2. The loss function: 

3. An optimization method: 𝜃 ≔ 𝜃 −
𝛼
𝐵
&
!"#

$

∇%ℓ ℎ% 𝑥 ! , 𝑦 !

𝑥 ℎ% 𝑥

𝑙(ℎ% 𝑥 , 𝑦) = −ℎ& 𝑥 + log&
'"#

(

exp ℎ' 𝑥

Question: how do they translate to modular components in code?



Deep learning is modular in nature

12

𝑥 Residual Block Residual Block Residual Block Linear Softmax
CrossEntropy

Linearℎ! ReLU
+

Multi-layer Residual Net

Residual block

ℎ!

𝑤!

ℎ#
matmul

transpose
ℎ"

Linear

ℎ! ℎ"
max

0

ReLU

Linear ℎ"



Residual Connections

13One of the most well-cited paper

ResNetV2



nn.Module: Compose Things Together

14

ℎ!

𝑤!

ℎ#
matmul

transpose
ℎ"

Linear

Key things to consider:
• For given inputs, how to compute outputs
• Get the list of (trainable) parameters
• Ways to initialize the parameters

Tensor in, tensor out

Linearℎ! ReLU
+

Residual block

Linear ℎ"



Loss functions as a special kind of module

15

Softmax
CrossEntropy

𝑙(ℎ% 𝑥 , 𝑦) = −ℎ& 𝑥 + log&
'"#

(

exp ℎ' 𝑥ℎ 𝑥 𝑙

𝑦 Scalar value

Questions
• How to compose multiple objective functions together?
• What happens during inference time after training? 

Tensor in, scalar out



Optimizer

16

𝑥 Residual Block Residual Block Residual Block Linear Softmax
CrossEntropy

Model

𝑤! 𝑤" 𝑤# 𝑤$

𝑤, ← 𝑤, − 𝛼𝑔,

• Takes a list of weights from the model perform steps of optimization 
• Keep tracks of auxiliary states (momentum)

SGD
𝑢, ← 𝛽𝑢, + 1 − 𝛽 𝑔,
𝑤, ← 𝑤, − 𝛼𝑢,

SGD with momentum
𝑢, ← 𝛽-𝑢, + 1 − 𝛽- 𝑔,
𝑣, ← 𝛽.𝑣, + 1 − 𝛽. 𝑔,.

𝑤, ← 𝑤, − 𝛼𝑢,/(𝑣,
-/. + 𝜖)

Adam



Regularization and optimizer
Two ways to incorporate regularization:

• Implement as part of loss function

• Directly incorporate as part of optimizer update

17

𝑤, ← (1 − 𝛼𝜆) 𝑤,−𝛼𝑔,SGD with weight decay (𝑙. regularization)



Initialization
Initialization strategy depends on the module being involved and the type of the 
parameter. Most neural network libraries have a set of common initialization 
routines

• weights: uniform, order of magnitude depends on input/output

• bias: zero

• Running sum of variance: one

Initialization can be folded into the construction phase of a nn.module.

18



Data loader and preprocessing

19

Dataset Random Rotate Random Resize 
and Crop

ModelData loading and augmentation pipeline

We often preprocess (augment) the dataset by randomly shuffle and 
transform the input

Data augmentation can account for significant portion of prediction 
accuracy boost in deep learning models

Data loading and augmentation is also compositional in nature



Deep learning is modular in nature

20

Data loader and 
preprocessing

nn.Module to 
compose the model

nn.Module to build 
loss functions

Optimizer

Parameters and gradients

data hypothesis loss

Initialization



Discussions
What are other possible examples of modular components?

21



Revisit programming abstraction 

22

class Layer:
def forward(bottom, top):

pass

def backward(top, 
propagate_down,
bottom):

pass

Example framework: Caffe 1.0 

𝑣!

𝑣"

𝑣#

𝑣$

exp

×

+

1

Couples gradient computation with the module composition.



Revisit programming abstraction

23

Example framework: PyTorch (needle:)

𝑣!

𝑣"

𝑣#

𝑣$

exp

×

+

1

import needle as ndl

v1 = ndl.Tensor([1])
v2 = ndl.exp(v1)
v3 = v2 + 1
v4 = v2 * v3

Two levels of abstractions
• Computational graph abstraction on Tensors, handles AD
• High level abstraction to handle modular composition



Outline
Programming abstractions

High level modular library components

24


