10-414/714 - Deep Learning Systems:
Algorithms and Implementation

Neural Network Library Abstractions

Fall 2021
J. Zico Kolter and Tiangi Chen (this time)
Carnegie Mellon University

Outline

Programming abstractions

High level modular library components

Outline

Programming abstractions

Programming abstractions

The programming abstraction of a framework defines the common ways to
Implement, extend and execute model computations.

While the design choices may seem obvious after seeing them, it is useful to learn
about the thought process, so that:

« We know why the abstractions are designed in this way

* Learn lessons to design new abstractions.

Case studies

Caffe1.0 TensorFlow 1.0 PyTorch
Caffe + ()
Tensor
2014 2015 2016

There are many frameworks being development along the way that we do not
have time to study: theano, torch7, mxnet, caffe2, chainer, jax ...

Forward and backward layer interface

Example framework: Caffe 1.0 class Layer:
def forward(bottom, top):
pass

def backward(top,
propagate_down,
bottom):
pass

Defines the forward computation and backward(gradient) operations

Used in cuda-convenet (the AlexNet framework)

Early pioneer: cuda-convnet

Computational graph and declarative programming

Example framework: Tensorflow 1.0

import tensorflow as tf

@ vl

tf.Variable()

° v2 = tf.exp(vl)
v =v2 +1
exp @ + v4d = v2 * v3

sess = tf.Session()
value4 = sess.run(feed dict={vl: numpy.array([1]})

First declare the computational graph

Then execute the graph by feeding input value
Early pioneer: Theano -

Imperative automatic differentiation

Example framework: PyTorch (needle:)
import needle as ndl

(> "

V2

° v3

exp @ va
|

@ Executes computation as we construct the computational graph
Allow easy mixing of python control flow and construction

ndl.Tensor([1])
ndl.exp(vl)

v2 + 1

v2 * v3

@ if v4.numpy() > 0.5:
vb = v4 * 2
else:
vh = v4
v5.backward()

Early pioneer: Chainer 3

Discussions

What are the pros and cons of each programming abstraction?

Outline

High level modular library components

10

Elements of Machine Learning

1. The hypothesis class:

\t\: {\j = e

k
2. The loss function: I(ho(),) = —h, () + 1082 exp (h;(x))

B
- - - - a i }
3. An optimization method: =6—— Zl: Vol(he(x®),y®)

Question: how do they translate to modular components in code?

11

Deep learning is modular in nature
Multi-layer Residual Net

@—> Residual Block [Residual Block [Residual Block > Linear > Crc?sosfltzr;]’?r)(; oy

Re&dualdook

12

1512.03385v1 [cs.CV] 10 Dec 2015

v

Residual Gonnections

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang

Shaoging Ren Jian Sun

Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions', where we also won the Ist
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

20-layer

56-layer

training error (%)
test error (%)

20-layer

v 0 © g

* ter. (led) * ter. (led)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.

Driven by the significance of depth, a question arises: Is
learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network

Anath Jnnvnnnine anmsenan mabn cabseatad faohiakh aniche ha

One of the most well-cited paper

05027v3 [cs.CV] 25 Jul 2016

Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

Microsoft Research

Abstract Deep residual networks [1] have emerged as a family of ex-
tremely deep architectures showing compelling accuracy and nice con-
vergence behaviors. In this paper, we analyze the propagation formu-
lations behind the residual building blocks, which suggest that the for-
ward and backward signals can be directly propagated from one block
to any other block, when using identity mappings as the skip connec-
tions and after-addition activation. A series of ablation experiments sup-
port the importance of these identity mappings. This motivates us to
propose a new residual unit, which makes training easier and improves
generalization. We report improved results using a 1001-layer ResNet
on CIFAR-10 (4.62% error) and CIFAR-100, and a 200-layer ResNet
on ImageNet. Code is available at: https://github.com/KaimingHe/
resnet-1k-layers.

ResNetV?2

13

nn.Module: GCompose Things Together

Residual block .
P TTTTTTTTTTTTTTTTTTTTTTmomomomomomomomooooooooooooooooooooooooooooo Tensor in, tensor out

Key things to consider:

* For given inputs, how to compute outputs
» (Get the list of (trainable) parameters

* Ways to initialize the parameters

14

Loss functions as a special kind of module

Scalar value -
Tensor in, scalar out
@\ 2 k
@—> o 4.@ [(hg(x),y) = —h,(x) + logz: exp (hj(x))
j=1

Questions
« How to compose multiple objective functions together?
« What happens during inference time after training”?

15

Optimizer

@—» Residual Block [Residual Block [Residual Block [Linear > CrfsogtE”r:fr’épy

» Takes a list of weights from the model perform steps of optimization
« Keep tracks of auxiliary states (momentum)

SGD SGD with momentum Adam
W; « w; — ag; u; < Pu; + (1 — B)g; u; < fu; + (1 —F1)g;
Wi <« W; — au; v; « Bovi + (1 — Br)gf

wW; « wW; — ocul-/(vil/2 + €)

16

Regularization and optimizer

Two ways to incorporate regularization:

* Implement as part of loss function

« Directly incorporate as part of optimizer update

SGD with weight decay (I, regularization)

w; « (1 —al)wi—ag;

17

Initialization

Initialization strategy depends on the module being involved and the type of the
parameter. Most neural network libraries have a set of common initialization

routines

« weights: uniform, order of magnitude depends on input/output
* bias: zero

* Running sum of variance: one

Initialization can be folded into the construction phase of a nn.module.

18

Data loader and preprocessing

Data loading and augmentation pipeline Model

--

and Crop

TP
1) 1 3 DR Py
—:> Dataset » Random Rotate > Random Resize —i—> J [
1

We often preprocess (augment) the dataset by randomly shuffle and
transform the input

Data augmentation can account for significant portion of prediction
accuracy boost in deep learning models

Data loading and augmentation is also compositional in nature

19

Deep learning is modular in nature

Data loader and
preprocessing

data

Initialization

nn.Module to

| compose the model

hypothesis

Optimizer

Ameters and gradients

nn.Module to build
loss functions

loss

20

Discussions

What are other possible examples of modular components”?

21

Revisit programming abstraction

Example framework: Caffe 1.0

class Layer:
def forward(bottom, top):
pass

def backward(top,
propagate_down,
bottom):
pass

Couples gradient computation with the module composition.

22

Revisit programming abstraction

Example framework: PyTorch (needle:)
import needle as ndl

‘E’ vl

V2

Q v3

exp @ va
|

@ Two levels of abstractions
« Computational graph abstraction on Tensors, handles AD

@ « High level abstraction to handle modular composition

ndl.Tensor([1])
ndl.exp(vl)

v2 + 1

v2 * v3

23

Outline

Programming abstractions

High level modular library components

24

