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Recap: Element of Machine Learning
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Making use of pretrained model

Per domain —

approach Data in Domain A Model for DomainA | [ > Prediction in domain A

Domain/task specific customization

. . , Domain
Leve rq g_l n g Big dataset |:> Pretrained model |:> F|ne-tun$:églélstomlzed |:> specific
pretraining predictions

What are typical ways to leverage a pretrained model?



CLIP: Image and Text Embedding

Text embeddings
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Image embeddings

Radford et.al Learning Transferable Visual Models From Natural Language Supervision
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Alignment objective

These embeddings can be used
in many downstream tasks



Recap: Diffusion Model

q(xr)

A

Generation process:  dx, = _[%,B(t)xt — ,B(t)e;(xt, 1t)] dt ++/ B(t) dw;

Noise prediction

What if we have want to generate
Image from input texts?

Image source: https://cvpr2022-tutorial-diffusion-models.github.io/



Adding Control Condition to Generation

q(xr)

A

Generation process: dx, = _[%,B(t)xt - ﬁ(t)(:'g(x;, ro(c). t)] dt ++/ B(t) dW,
t

Noise prediction

T9(c) Embedding of extra condition

Use CLIP embedding for text input!

Image source: https://cvpr2022-tutorial-diffusion-models.github.io/



Latent Space Diffusion Models
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Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 2022



Control Net
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(a) Before (b) After

Lvmin Zhang, Anyi Rao, Maneesh Agrawala. Adding Conditional Control to Text-to-Image Diffusion Models.

Initialized as original model
(due to zero weight convolution)
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Control Net applied to Stable D
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Lvmin Zhang, Anyi Rao, Maneesh Agrawala. Adding Conditional Control to Text-to-Image Diffusion Models.
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Control Net

P AL

Input Canny edge

Input human pose

Lvmin Zhang, Anyi Rao, Maneesh Agrawala. Adding Conditional Control to Text-to-Image Diffusion Models.

i’ - 1

“chef in kitchen”

“Lincoln statue”
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Language models
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LLMs comes with a lot of parameters

T ———————————— |
Chat Demo Llama-70B would consume 320GB

[System Initalize] Initialize GPU device: WebGPU - Apple VRAM to j U St to Sto re pa ra m ete rS i n fp 3 2

How do we ship domain specific model variants?
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Language Models: Places that are
Customizable

Each colored components can be
LLM weights customized/post-processed

token
embeddings

prompts/context ~ Outputs ...
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LoRA: Low-Rank Adaptation

pretrained

Fix pretrained weight

w

Hu et.al. LoRA: Low-Rank Adaptation of Large Language Models

A and B are low rank matrices

Also applies to diffusion models
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Multi-Modality and Embedding Mapping

Visual input example, Extreme Ironing:

LLM

token
embeddings

“visual tokens”

Text Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures. jpg
as em b ed dl n gS . User What is unusual about this image?
em be dd In LLaVA The unusual aspect of this image is a man ironing clothes on the back of a minivan or
van. This is not a typical place to perform this activity, as one would usually iron clothes
| d gs in a more stationary and safe location, such as a home, using a regular ironing board.
mage encoder The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a

vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how
‘ ‘ . . . .y . . . .

the man is able to maintain balance and stability while ironing clothes in such an unstable
environment.

image

Liu and Li et.al. Visual Instruction Tuning: LLaVA (Large Language-and-Vision Assistant) built towards GPT-4V level capabilities
Zhu and Chen et.al. MiniGPT-4: Enhancing Vision-language Understanding with Advanced Large Language Models



Postprocessing Logits

Adding penalties for repetitions

Forcing output to follow a grammar (e.g. JSON)

Process
ed logits

T

logits

LLM
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Generating Structured Outputs via Constraint
Decoding

JSON Schema

class Task(BaseModel):

done: bool

name. str

steps: List[int]

{

LLM Output

"done":

> LLM Decoding
w/ mask
| Token Mask |
4

true  apple X
false v task X

}

Example Valid JSONs

"done": true,

me” : “"Clean

kitchen",

{

LLM Output

"done": true

~

dime .
“steps”: [1,:2; 33 4]

" O
€ ";;_‘\,r_—,

name": "Presentation",

“steps": [1, 2]
}

LLM Decoding

w/ mask

/

2

> \n

Token Mask |
Ve X
/ abcd X

Challenges

Large vocabulary size

Infinite possible grammar state for
complex grammars

GPUs getting faster (and mask generation
on CPU cannot keep up with them)



Context-free Grammar

Context-free Grammar Pushdown Automata S~

root: [@] Array ~‘~~\
root ::= <array> | <str> ~<_
[1] <str> S~

array ::= [3] <str'>; ( ) N\ ~\\\\

"[' (<str> | <array> ',')* [4] <array> H [71 '1"' \\‘~\\ Process
<str> | <array> ']’ C array: e i
| y> '] :,> () — 5] <str>4:<a ed logits
[6] <array>~ ~—" T
str si= "M AT\ MY [9] [7"\] e
T str: =Y ="
P DS @ -
Example Accepted Strings Matching Stack for Input ([ (a | ]
Stack Top -~ LLM
"abc"
Node @ +--->Now at node 1 of rule <str>

[ ["abc", ["def", "ghi]] j [3]<str> ---->Expanding edge [3] <str>

-
-’
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-’
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ke

[ ["funcl”, [["func2"],"func3"]] ] [@]<array> - --->Expanding edge [0] <array>

-~
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XGrammar: Efficient and Flexible Grammar
Engine

Key insight
e Context-independent tokens: Most tokens (>99%)
can be determined ahead of time by only looking at Stack Top @
top of the stack F o e,
e Context-dependent tokens we still check outlier Toke’:ij‘:i’%ach e—j
tokens at runtime to ensure full coverage. o &oc TSSE;Q ?epen dort () } amined doin
e At runtime, we first retrieve the pre-computed e %’é}fé;ﬁ;"epe”de“‘ preprocessing

token mask from the parsing state, then check the O Context-dependent (a"b)- - - Determined at runtime

context-dependent tokens efficiently.
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