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Fully connected networks
Now that we have covered the basics of automatic differentiation, we can return 
to “standard” forms of deep networks

A 𝐿-layer, fully connected network, a.k.a. multi-layer perceptron (MLP), now with 
an explicit bias term, is defined by the iteration

𝑧
𝑖+1

= 𝜎
𝑖
𝑊

𝑖

𝑇
𝑧
𝑖
+ 𝑏

𝑖
, 𝑖 = 1,… ,𝐿

ℎ
𝜃
𝑥 ≡ 𝑧

𝐿+1

𝑧
1
≡ 𝑥

with parameters 𝜃 = 𝑊
1:𝐿

, 𝑏
1:𝐿

, and where 𝜎
𝑖
(𝑥) is the nonlinear activation, 

usually with 𝜎
𝐿
𝑥 = 𝑥
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Matrix form and broadcasting subtleties
Let’s consider the matrix form of the the iteration

𝑍
𝑖+1

= 𝜎
𝑖
𝑍
𝑖
𝑊

𝑖
+ 1𝑏

𝑖

𝑇

Notice a subtle point: to write things correctly in matrix form, the update for 
𝑍
𝑖+1

∈ ℝ
𝑚×𝑛 requires that we form the matrix 1𝑏

𝑖

𝑇
∈ ℝ

𝑚×𝑛

In practice, you don’t form these matrices, you perform operation via broadcasting
• E.g. for a 𝑛×1 vector (or higher-order tensor), broadcasting treats it as an 
𝑛×𝑝 matrix repeating the same column 𝑝 times

• We could write iteration (informally) just as 𝑍
𝑖+1

= 𝜎
𝑖
𝑍
𝑖
𝑊

𝑖
+ 𝑏

𝑖

𝑇

• Broadcasting does not copy any data (described more in later lecture)

5



Key questions for fully connected networks
In order to actually train a fully-connected network (or any deep network), we need 
to address a certain number of questions:
• How do we choose the width and depth of the network?
• How do we actually optimize the objective? (“SGD” is the easy 

answer, but not the algorithm most commonly used in practice)
• How do we initialize the weights of the network?
• How do we ensure the network can continue to be trained easily 

over multiple optimization iterations?

There are (still) no definite answers to these questions, and for deep learning they 
wind up being problem-specific, but we will cover some basic principles
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Gradient descent
Let’s reconsider the generic gradient descent updates we described previously, 
now for a general function 𝑓 , and writing iterate number 𝑡 explicitly

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼∇

𝜃
𝑓(𝜃

𝑡
)

where 𝛼 > 0 is step size (learning rate), ∇
𝜃
𝑓 𝜃

𝑡
 is gradient evaluated at the 

parameters 𝜃
𝑡

Takes the “steepest descent direction” locally (defined in terms of ℓ
2
 norm, as we 

will discuss shortly), but may oscillate over larger time scales
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Illustration of gradient descent

For 𝜃 ∈ ℝ
2, consider quadratic function 𝑓 𝜃 =

1

2
𝜃
𝑇
𝑃𝜃 + 𝑞

𝑇
𝜃, for 𝑃  positive 

definite (all positive eigenvalues)

Illustration of gradient descent with different step sizes:
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Newton’s Method
One way to integrate more “global” structure into optimization methods is 
Newton’s method, which scales gradient according to inverse of the Hessian 
(matrix of second derivatives)

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼 ∇

𝜃

2
𝑓 𝜃

𝑡

−1

∇
𝜃
𝑓(𝜃

𝑡
)

where ∇
𝜃

2
𝑓 𝜃

𝑡
 is the Hessian, 𝑛×𝑛 matrix of all second derivatives

Equivalent to approximating the function as quadratic using second-order Taylor 
expansion, then solving for optimal solution

Full step given by 𝛼 = 1, otherwise called a damped Newton method
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Illustration of Newton’s method
Newton’s method (will 𝛼 = 1) will 
optimize quadratic functions in one step

Not of that much practical relevance to 
deep learning for two reasons

1. We can’t efficiently solve for 
Newton step, even using 
automatic differentiation (though 
there are tricks to approximately 
solve it)

2. For non-convex optimization, it’s 
very unclear that we even want 
to use the Newton direction
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Momentum
Can we find “middle grounds” that are as easy to compute as gradient descent, 
but which take into account more “global” structure like Newton’s method

One common strategy is to use momentum update, that takes into account a 
moving average of multiple previous gradients

𝑢
𝑡+1

= 𝛽𝑢
𝑡
+ 1− 𝛽 ∇

𝜃
𝑓 𝜃

𝑡

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1

where 𝛼 is step size as before, and 𝛽 is momentum averaging parameter
• Note: often written in alternative forms 𝑢

𝑡+1
= 𝛽𝑢

𝑡
+∇

𝜃
𝑓 𝜃

𝑡
 (or 𝑢

𝑡+1
=

𝛽𝑢
𝑡
+𝛼∇

𝜃
𝑓 𝜃

𝑡
) but I prefer above to keep 𝑢 the same “scale” as gradient
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Illustration of momentum
Momentum “smooths” out the descent steps, but can also introduce other forms 
of oscillation and non-descent behavior

Frequently useful in training deep networks in practice
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“Unbiasing” momentum terms
The momentum term 𝑢

𝑡
 (if initialized to zero, as is common), will be smaller in 

initial iterations than in later ones

To “unbias” the update to have equal expected magnitude across all iterations, we 
can use the update

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1
/(1 − 𝛽

𝑡+1
)
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Nesterov Momentum
One (admittedly, of many) useful tricks in the notion of Nesterov momentum (or 
Nesterov acceleration), which computes momentum update at “next” point
𝑢
𝑡+1

= 𝛽𝑢
𝑡
+ 1− 𝛽 ∇

𝜃
𝑓 𝜃

𝑡

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1
 

⟹  
𝑢
𝑡+1

= 𝛽𝑢
𝑡
+ 1− 𝛽 ∇

𝜃
𝑓 𝜃

𝑡
−𝛼𝑢

𝑡

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1
 

A “good” thing for convex optimization, and (sometimes) helps for deep networks
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Adam
The scale of the gradients can vary widely for different parameters, especially e.g. 
across different layers of a deep network, different layer types, etc

So-called adaptive gradient methods attempt to estimate this scale over iterations 
and then re-scale the gradient update accordingly

Most widely used adaptive gradient method for deep learning is Adam algorithm, 
which combines momentum and adaptive scale estimation

𝑢
𝑡+1

= 𝛽
1
𝑢
𝑡
+ 1− 𝛽

1
∇
𝜃
𝑓 𝜃

𝑡

𝑣
𝑡+1

= 𝛽
2
𝑣
𝑡
+ 1− 𝛽

2
∇
𝜃
𝑓 𝜃

𝑡

2

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1
/ 𝑣

𝑡+1

1/2
+ 𝜖
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Notes on / illustration of Adam
Whether Adam is “good” optimizer is endlessly debated within deep learning, but 
it often seems to work quite well in practice (maybe?)

There are alternative universes where endless other variants became the 
“standard” (no unbiasing? average of absolute magnitude rather than squared? 
Nesterov-like acceleration?) but Adam is well-tuned and hard to uniformly beat 
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Stochastic variants
All the previous examples considered batch update to the parameters, but the 
single most important optimization choice is to use stochastic variants

Recall our machine learning optimization problem

minimize
𝜃

1

𝑚
∑

𝑖=1

𝑚

ℓ ℎ
𝜃
𝑥
𝑖
, 𝑦

𝑖

which is the minimization of an empirical expectation over losses

We can get a noisy (but unbiased) estimate of gradient by computing gradient of 
the loss over just a subset of examples (called a minibatch)
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Stochastic Gradient Descent
This leads us again to the SGD algorithm, repeating for batches 𝐵 ⊂ {1,… ,𝑚}

𝜃
𝑡+1

= 𝜃
𝑡
−
𝛼

𝐵
∑

𝑖∈𝐵

∇
𝜃
ℓ ℎ 𝑥

𝑖
, 𝑦

𝑖

Instead of taking a few expensive, noise-free, steps, we take many cheap, noisy 
steps, which ends having much strong performance per compute 
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The most important takeaways 

All the optimization methods you have seen thus far presented are only actually 
used in their stochastic form

The amount of valid intuition about these optimization methods you will get from 
looking at simple (convex, quadratic) optimization problems is limited

You need to constantly experiment to gain an understanding / intuition of how 
these methods actually affect deep networks of different types
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Initialization of weights
Recall that we optimize parameters iteratively by stochastic gradient descent, e.g.

𝑊
𝑖
≔𝑊

𝑖
−𝛼∇

𝑊
𝑖

ℓ ℎ
𝜃
𝑋 ,𝑦

But how do we choose the initial values of 𝑊
𝑖
, 𝑏

𝑖
? (maybe just initialize to zero?)

Recall the manual backpropagation forward/backward passes (without bias):
𝑍
𝑖+1

= 𝜎
𝑖
𝑍
𝑖
𝑊

𝑖

𝐺
𝑖
= 𝐺

𝑖+1
∘ 𝜎

𝑖

′
𝑍
𝑖
𝑊

𝑖
𝑊

𝑖

𝑇

• If 𝑊
𝑖
= 0, then 𝐺

𝑗
= 0 for 𝑗 ≤ 𝑖, ⟹ ∇

𝑊
𝑖

ℓ ℎ
𝜃
𝑋 ,𝑦 = 0

• I.e., 𝑊
𝑖
= 0 is a (bad) local optimum of the objective (really saddle point)
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Key idea #1: Choice of initialization matters

Let’s just initialize weights “randomly”, e.g., 𝑊
𝑖
∼𝒩(0, 𝜎

2
𝐼 )

The choice of variance 𝜎2 will affect two (related) quantities:
1. The norm of the forward activations 𝑍

𝑖

2. The norm of the the gradients ∇
𝑊

𝑖

ℓ ℎ
𝜃
𝑋 ,𝑦
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Key idea #2: Weights don’t move “that much”
Might have the picture in your mind that the parameters of a network converge to 
some similar region of points regardless of their initialization

This is not true … weights often stay much closer to their initialization than to the 
“final” point after optimization from different 

End result: initialization matters … we’ll see some of the practical aspects next 
lecture
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What causes these effects?

Consider independent random variables 𝑥 ∼𝒩(0,1), 𝑤 ∼𝒩 0,
1

𝑛
; then

𝐄 𝑥
𝑖
𝑤
𝑖
= 𝐄 𝑥

𝑖
𝐄 𝑤

𝑖
= 0, 𝐕𝐚𝐫 𝑥

𝑖
𝑤
𝑖
= 𝐕𝐚𝐫 𝑥

𝑖
𝐕𝐚𝐫 𝑤

𝑖
= 1/𝑛

so 𝐄 𝑤
𝑇
𝑥 = 0, 𝐕𝐚𝐫 𝑤𝑇

𝑥 = 1 (𝑤𝑇
𝑥 →𝒩(0,1) by central limit theorem)

Thus, informally speaking if we used a linear activation and 𝑧
𝑖
∼𝒩 0, 𝐼 , 𝑊

𝑖
∼

𝒩 0,
1

𝑛
𝐼  then 𝑧

𝑖+1
=𝑊

𝑖

𝑇
𝑧
𝑖
∼𝒩(0, 𝐼)

If we use a ReLU nonlinearity, then “half” the components of 𝑧
𝑖
 will be set to zero, 

so we need twice the variance on 𝑊
𝑖
 to achieve the same final variance, hence 

𝑊
𝑖
∼𝒩 0,

2

𝑛
𝐼  (Kaiming normal initialization)
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