
Deep Learning Systems:
Algorithms and Implementation

Fully connected networks, optimization,
initialization

J. Zico Kolter (this time) and Tianqi Chen
Carnegie Mellon University

1

Outline
Fully connected networks

Optimization

Initialization

2

Outline
Fully connected networks

Optimization

Initialization

3

Fully connected networks
Now that we have covered the basics of automatic differentiation, we can return
to “standard” forms of deep networks

A 𝐿-layer, fully connected network, a.k.a. multi-layer perceptron (MLP), now with
an explicit bias term, is defined by the iteration

𝑧
𝑖+1

= 𝜎
𝑖
𝑊

𝑖

𝑇
𝑧
𝑖
+ 𝑏

𝑖
, 𝑖 = 1,… ,𝐿

ℎ
𝜃
𝑥 ≡ 𝑧

𝐿+1

𝑧
1
≡ 𝑥

with parameters 𝜃 = 𝑊
1:𝐿

, 𝑏
1:𝐿

, and where 𝜎
𝑖
(𝑥) is the nonlinear activation,

usually with 𝜎
𝐿
𝑥 = 𝑥

4

Matrix form and broadcasting subtleties
Let’s consider the matrix form of the the iteration

𝑍
𝑖+1

= 𝜎
𝑖
𝑍
𝑖
𝑊

𝑖
+ 1𝑏

𝑖

𝑇

Notice a subtle point: to write things correctly in matrix form, the update for
𝑍
𝑖+1

∈ ℝ
𝑚×𝑛 requires that we form the matrix 1𝑏

𝑖

𝑇
∈ ℝ

𝑚×𝑛

In practice, you don’t form these matrices, you perform operation via broadcasting
• E.g. for a 𝑛×1 vector (or higher-order tensor), broadcasting treats it as an
𝑛×𝑝 matrix repeating the same column 𝑝 times

• We could write iteration (informally) just as 𝑍
𝑖+1

= 𝜎
𝑖
𝑍
𝑖
𝑊

𝑖
+ 𝑏

𝑖

𝑇

• Broadcasting does not copy any data (described more in later lecture)

5

Key questions for fully connected networks
In order to actually train a fully-connected network (or any deep network), we need
to address a certain number of questions:
• How do we choose the width and depth of the network?
• How do we actually optimize the objective? (“SGD” is the easy

answer, but not the algorithm most commonly used in practice)
• How do we initialize the weights of the network?
• How do we ensure the network can continue to be trained easily

over multiple optimization iterations?

There are (still) no definite answers to these questions, and for deep learning they
wind up being problem-specific, but we will cover some basic principles

6

All related
questions
that affect
each other

Outline
Fully connected networks

Optimization

Initialization

7

Gradient descent
Let’s reconsider the generic gradient descent updates we described previously,
now for a general function 𝑓 , and writing iterate number 𝑡 explicitly

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼∇

𝜃
𝑓(𝜃

𝑡
)

where 𝛼 > 0 is step size (learning rate), ∇
𝜃
𝑓 𝜃

𝑡
 is gradient evaluated at the

parameters 𝜃
𝑡

Takes the “steepest descent direction” locally (defined in terms of ℓ
2
 norm, as we

will discuss shortly), but may oscillate over larger time scales

8

Illustration of gradient descent

For 𝜃 ∈ ℝ
2, consider quadratic function 𝑓 𝜃 =

1

2
𝜃
𝑇
𝑃𝜃 + 𝑞

𝑇
𝜃, for 𝑃 positive

definite (all positive eigenvalues)

Illustration of gradient descent with different step sizes:

9

°4 °2 0 2 4
µ1

°4

°2

0

2

4

µ 2

0 10 20 30
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.35

°4 °2 0 2 4
µ1

°4

°2

0

2

4

µ 2

0 10 20 30
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.1

Newton’s Method
One way to integrate more “global” structure into optimization methods is
Newton’s method, which scales gradient according to inverse of the Hessian
(matrix of second derivatives)

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼 ∇

𝜃

2
𝑓 𝜃

𝑡

−1

∇
𝜃
𝑓(𝜃

𝑡
)

where ∇
𝜃

2
𝑓 𝜃

𝑡
 is the Hessian, 𝑛×𝑛 matrix of all second derivatives

Equivalent to approximating the function as quadratic using second-order Taylor
expansion, then solving for optimal solution

Full step given by 𝛼 = 1, otherwise called a damped Newton method

10

Illustration of Newton’s method
Newton’s method (will 𝛼 = 1) will
optimize quadratic functions in one step

Not of that much practical relevance to
deep learning for two reasons

1. We can’t efficiently solve for
Newton step, even using
automatic differentiation (though
there are tricks to approximately
solve it)

2. For non-convex optimization, it’s
very unclear that we even want
to use the Newton direction

11

°4 °2 0 2 4
µ1

°4

°2

0

2

4

µ 2

0 10 20 30
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.5

Momentum
Can we find “middle grounds” that are as easy to compute as gradient descent,
but which take into account more “global” structure like Newton’s method

One common strategy is to use momentum update, that takes into account a
moving average of multiple previous gradients

𝑢
𝑡+1

= 𝛽𝑢
𝑡
+ 1− 𝛽 ∇

𝜃
𝑓 𝜃

𝑡

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1

where 𝛼 is step size as before, and 𝛽 is momentum averaging parameter
• Note: often written in alternative forms 𝑢

𝑡+1
= 𝛽𝑢

𝑡
+∇

𝜃
𝑓 𝜃

𝑡
 (or 𝑢

𝑡+1
=

𝛽𝑢
𝑡
+𝛼∇

𝜃
𝑓 𝜃

𝑡
) but I prefer above to keep 𝑢 the same “scale” as gradient

12

Illustration of momentum
Momentum “smooths” out the descent steps, but can also introduce other forms
of oscillation and non-descent behavior

Frequently useful in training deep networks in practice

13

°4 °2 0 2 4
µ1

°4

°2

0

2

4

µ 2

0 20
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.35
Ø = 0

°4 °2 0 2 4
µ1

°4

°2

0

2

4

µ 2

0 10 20 30
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.35
Ø = 0.7

“Unbiasing” momentum terms
The momentum term 𝑢

𝑡
 (if initialized to zero, as is common), will be smaller in

initial iterations than in later ones

To “unbias” the update to have equal expected magnitude across all iterations, we
can use the update

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1
/(1 − 𝛽

𝑡+1
)

14
°4 °2 0 2 4

µ1

°4

°2

0

2

4

µ 2

0 10 20 30
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.35
Ø = 0.7

°4 °2 0 2 4
µ1

°4

°2

0

2

4

µ 2
0 10 20 30

Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.35
Ø = 0.7
(unbiased)

Nesterov Momentum
One (admittedly, of many) useful tricks in the notion of Nesterov momentum (or
Nesterov acceleration), which computes momentum update at “next” point
𝑢
𝑡+1

= 𝛽𝑢
𝑡
+ 1− 𝛽 ∇

𝜃
𝑓 𝜃

𝑡

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1

⟹
𝑢
𝑡+1

= 𝛽𝑢
𝑡
+ 1− 𝛽 ∇

𝜃
𝑓 𝜃

𝑡
−𝛼𝑢

𝑡

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1

A “good” thing for convex optimization, and (sometimes) helps for deep networks

15
°4 °2 0 2 4

µ1

°4

°2

0

2

4

µ 2

0 10 20 30
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.35
Ø = 0.7

°4 °2 0 2 4
µ1

°4

°2

0

2

4

µ 2
0 10 20 30

Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.35
Ø = 0.7
(Nesterov)

Adam
The scale of the gradients can vary widely for different parameters, especially e.g.
across different layers of a deep network, different layer types, etc

So-called adaptive gradient methods attempt to estimate this scale over iterations
and then re-scale the gradient update accordingly

Most widely used adaptive gradient method for deep learning is Adam algorithm,
which combines momentum and adaptive scale estimation

𝑢
𝑡+1

= 𝛽
1
𝑢
𝑡
+ 1− 𝛽

1
∇
𝜃
𝑓 𝜃

𝑡

𝑣
𝑡+1

= 𝛽
2
𝑣
𝑡
+ 1− 𝛽

2
∇
𝜃
𝑓 𝜃

𝑡

2

𝜃
𝑡+1

= 𝜃
𝑡
−𝛼𝑢

𝑡+1
/ 𝑣

𝑡+1

1/2
+ 𝜖

16

(Common to use
unbiased momentum

estimated for both
terms)

Notes on / illustration of Adam
Whether Adam is “good” optimizer is endlessly debated within deep learning, but
it often seems to work quite well in practice (maybe?)

There are alternative universes where endless other variants became the
“standard” (no unbiasing? average of absolute magnitude rather than squared?
Nesterov-like acceleration?) but Adam is well-tuned and hard to uniformly beat

17
°4 °2 0 2 4

µ1

°4

°2

0

2

4

µ 2

0 10 20 30
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.6
Ø1 = 0.7
Ø2 = 0.8

Stochastic variants
All the previous examples considered batch update to the parameters, but the
single most important optimization choice is to use stochastic variants

Recall our machine learning optimization problem

minimize
𝜃

1

𝑚
∑

𝑖=1

𝑚

ℓ ℎ
𝜃
𝑥
𝑖
, 𝑦

𝑖

which is the minimization of an empirical expectation over losses

We can get a noisy (but unbiased) estimate of gradient by computing gradient of
the loss over just a subset of examples (called a minibatch)

18

Stochastic Gradient Descent
This leads us again to the SGD algorithm, repeating for batches 𝐵 ⊂ {1,… ,𝑚}

𝜃
𝑡+1

= 𝜃
𝑡
−
𝛼

𝐵
∑

𝑖∈𝐵

∇
𝜃
ℓ ℎ 𝑥

𝑖
, 𝑦

𝑖

Instead of taking a few expensive, noise-free, steps, we take many cheap, noisy
steps, which ends having much strong performance per compute

19
°4 °2 0 2 4

µ1

°4

°2

0

2

4

µ 2

0 10 20 30
Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.35

°4 °2 0 2 4
µ1

°4

°2

0

2

4

µ 2
0 10 20 30

Iteration

0

5

10

15

O
bj

ec
ti
ve

f
(µ

)

Æ = 0.1
(SGD)

The most important takeaways

All the optimization methods you have seen thus far presented are only actually
used in their stochastic form

The amount of valid intuition about these optimization methods you will get from
looking at simple (convex, quadratic) optimization problems is limited

You need to constantly experiment to gain an understanding / intuition of how
these methods actually affect deep networks of different types

20

Outline
Fully connected networks

Optimization

Initialization

21

Initialization of weights
Recall that we optimize parameters iteratively by stochastic gradient descent, e.g.

𝑊
𝑖
≔𝑊

𝑖
−𝛼∇

𝑊
𝑖

ℓ ℎ
𝜃
𝑋 ,𝑦

But how do we choose the initial values of 𝑊
𝑖
, 𝑏

𝑖
? (maybe just initialize to zero?)

Recall the manual backpropagation forward/backward passes (without bias):
𝑍
𝑖+1

= 𝜎
𝑖
𝑍
𝑖
𝑊

𝑖

𝐺
𝑖
= 𝐺

𝑖+1
∘ 𝜎

𝑖

′
𝑍
𝑖
𝑊

𝑖
𝑊

𝑖

𝑇

• If 𝑊
𝑖
= 0, then 𝐺

𝑗
= 0 for 𝑗 ≤ 𝑖, ⟹ ∇

𝑊
𝑖

ℓ ℎ
𝜃
𝑋 ,𝑦 = 0

• I.e., 𝑊
𝑖
= 0 is a (bad) local optimum of the objective (really saddle point)

22

Key idea #1: Choice of initialization matters

Let’s just initialize weights “randomly”, e.g., 𝑊
𝑖
∼𝒩(0, 𝜎

2
𝐼)

The choice of variance 𝜎2 will affect two (related) quantities:
1. The norm of the forward activations 𝑍

𝑖

2. The norm of the the gradients ∇
𝑊

𝑖

ℓ ℎ
𝜃
𝑋 ,𝑦

23

0 10 20 30 40 50
Layer

10°2
10°1
100
101
102
103

A
ct

iv
at

io
n

no
rm

0 10 20 30 40 50
Layer

10°8
10°6
10°4
10°2
100
102
104

G
ra

di
en

t
no

rm
æ2 = 1/n æ2 = 2/n æ2 = 3/n

Illustration on MNIST
with 𝑛 = 100 hidden

units, depth 50,
ReLU nonlinearities

Key idea #2: Weights don’t move “that much”
Might have the picture in your mind that the parameters of a network converge to
some similar region of points regardless of their initialization

This is not true … weights often stay much closer to their initialization than to the
“final” point after optimization from different

End result: initialization matters … we’ll see some of the practical aspects next
lecture

24

What causes these effects?

Consider independent random variables 𝑥 ∼𝒩(0,1), 𝑤 ∼𝒩 0,
1

𝑛
; then

𝐄 𝑥
𝑖
𝑤
𝑖
= 𝐄 𝑥

𝑖
𝐄 𝑤

𝑖
= 0, 𝐕𝐚𝐫 𝑥

𝑖
𝑤
𝑖
= 𝐕𝐚𝐫 𝑥

𝑖
𝐕𝐚𝐫 𝑤

𝑖
= 1/𝑛

so 𝐄 𝑤
𝑇
𝑥 = 0, 𝐕𝐚𝐫 𝑤𝑇

𝑥 = 1 (𝑤𝑇
𝑥 →𝒩(0,1) by central limit theorem)

Thus, informally speaking if we used a linear activation and 𝑧
𝑖
∼𝒩 0, 𝐼 , 𝑊

𝑖
∼

𝒩 0,
1

𝑛
𝐼 then 𝑧

𝑖+1
=𝑊

𝑖

𝑇
𝑧
𝑖
∼𝒩(0, 𝐼)

If we use a ReLU nonlinearity, then “half” the components of 𝑧
𝑖
 will be set to zero,

so we need twice the variance on 𝑊
𝑖
 to achieve the same final variance, hence

𝑊
𝑖
∼𝒩 0,

2

𝑛
𝐼 (Kaiming normal initialization)

25

