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“Layers” in deep networks
The term “layer” is a overloaded in deep learning … we need to distinguish 
between two things, where we’ll use needle conventions:
• Operators define “atomic” operations in the compute graph, along with it’s 

explicit gradient pass: i.e. matrix multiplication, convolution, elementwise 
nonlinearities, etc

• Modules define collections of operators, where the backward pass is 
created implicitly via the construction of the computational graph

What is the advantage to defining functions as operators rather than modules?
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Example: convolution
Recall from our previous lecture that convolution could be specified in terms of a 
number of matrix multiplication operations:

What is advantage of making convolution an atomic operator?
• Possible to optimize forward pass in a modular fashion 
• No need to keep all intermediate computational terms (e.g., im2col matrix) in 

memory in the compute graph
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More complex layers?
What if we want to define a “layer” in a deep network that performs some more  
complex operation: solve an optimization problem, compute a fixed point, solve 
an ODE, etc?

We could simply implement the “solver” in our automatic differentiation tool itself 
(i.e., as a Module), allows us to embed it in any larger computational graph

… but, as we will see, there are also some notable advantages to implementing 
these functions as atomic operations (i.e., as Operators)
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Explicit vs. Implicit layers 
Virtually all layers (operators) we have used 
so far are explicit, in that they themselves 
involve a “fixed” transformer between input 
and output

Implicit layers (operators), in contrast, just 
define a more complex operation, in terms 
of satisfying some joint condition of the 
input and output
• Examples of differential equations, 

fixed point iteration, optimization 
solutions, etc, all can fit this mold
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Compute
y = f(x) yx

Find y such that
g(x, y) = 0 yx

Explicit layer

Implicit layer



Motivating example: Deep Equilibrium Models
Consider a traditional MLP applied to an input 𝑥

We now modify this network in two ways: by re-injecting the input at each step, 
and by applying the same weight matrix at each iteration (weight tying)
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Iterations of deep weight-tied models
With a weight-tied model of this form, we are 
applying the same function repeatedly to the 
hidden units

𝑧
𝑖+1

= 𝜎(𝑊𝑧
𝑖
+𝑥)

In many situations, we can design the network 
such that this iteration will converge to some 
fixed point, or equilibrium point

𝑧
⋆
= 𝜎(𝑊𝑧

⋆
+𝑥)

Can define a layer that directly finds this 
equilibrium point (via fixed point iteration or 
other solution method)
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Deep Equilibrium Models
In practice we want to find an equilibrium point of a more complex “cell”, and use 
this as our entire model (plus one additional linear layer)

If we implement this operation as an Operator in needle, then it doesn’t matter 
how we compute the fixed point 𝑧⋆ (e.g., using advanced nonlinear solvers), and 
we don’t need to store intermediate states in compute graph

But in order to make it an Operator, we need to be able to differentiate through 
(i.e., implement compute_gradient for this operation)
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Residual block, Transformer block, LSTM cell, etc (𝜃 ≡ parameters of layers)
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Differentiating through an implicit layer
We define an implicit layer that finds the solution to the the nonlinear equation
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⋆
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⋆
, 𝑥), where we call solution 𝑧⋆(𝑥)

How do we differentiate through this layer?  Implicit differentiation…
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Integration within automatic differentiation
Recall that in our automatic differentiation framework, we really just wanted to be 
able to compute product of adjoint and the layer gradient
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In other words, to implement backprop for implicit layer, we just need to add this
“special” adjoint computation into the backward pass
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“Special” adjoint computation for implicit layer “Normal” AD adjoint



In detail: computing the backward pass
Let’s look at the solution to this backward pass more closely
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Which looks a lot like the solution to the fixed point equation
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Backward pass of fixed point operator can be implemented as fixed point 
operator of AD adjoint computation
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Summary of the above
The final implementation is indeed slightly involved, so don’t worry if you didn’t 
follow all of the above

Main takeaway is that the backward pass of a fixed point operator involves solving 
another fixed point operation that in terms of various adjoint operators

All of this can be implemented within Operator class of needle: i.e., create 
FixedPointOp calls itself in its compute_gradient() function
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Key idea: maintain multiple spatial scales within the hidden unit of a DEQ model, 
and simultaneously find equilibrium point for all of them

Multiscale deep equilibrium models

17[Bai, Koltun, Kolter “Multiscale Deep Equilibrium Models”, NeurIPS 2020]
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Visualization of Segmentation
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Neural ordinary differential equations
If a vector 𝑧 follows dynamics 𝑓 :

𝑑𝑧

𝑑𝑡
= 𝑓(𝑧 𝑡 , 𝑡, 𝜃)

Can find 𝑧 𝑡
1

by starting at 𝑧 𝑡
0

and 
integrating until time 𝑡

1
:

𝑧 𝑡
1
= 𝑧 𝑡

0
+∫

𝑡
0

𝑡
1

𝑓 𝑧 𝑡 , 𝑡, 𝜃 𝑑𝑡

An implicit layer: 𝑦 = odeint(𝑓, 𝑥, 𝑡
0
, 𝑡
1
, 𝜃)
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Latent ODEs for Irregularly-Sampled Time Series. Rubanova, Chen, Duvenaud (2020)
Neural Controlled Differential Equations for Irregular Time Series. 
Kidger, Morrill, Foster, Lyons (2020)
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series. de 
Brouwer, Simm, Arany, Moreau. (2020)

Continuous-time time series Models
Neural ODEs can deal 
with data collected at 
irregular intervals natively



Differentiable optimization
DEQs and Neural ODEs both impose substantial 
structure on the nature of the layer, in order to 
gain substantial representational power

Other common strategy for imposing a different 
(but related) kind of structure is that of 
differentiable optimization

Layer of the form
𝑧
⋆
= argmin

𝑧∈𝒞(𝑥)

𝑓(𝑧, 𝑥)
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Some example applications
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Learning a convex polytope from data 
[Amos and Kolter., 2018]

Solving Sudoku (w/ MNIST digits) using 
differentiable SDP solver [Wang et al., 2019]

Controlling HVAC systems with differentiable 
MPC controllers [Chen et al., 2019]


