
Deep Learning Systems:
Algorithms and Implementation

Normalization and Regularization

J. Zico Kolter (this time) and Tianqi Chen
Carnegie Mellon University

1

Outline
Normalilzation

Regularization

Interaction of optimization, initialization, normalization, regularization

2

Outline
Normalilzation

Regularization

Interaction of optimization, initialization, normalization, regularization

3

Initialization vs. optimization
Suppose we choose 𝑊

𝑖
∼𝒩(0,

𝑐

𝑛
), where (for a ReLU network) 𝑐 ≠ 2…

Won’t the the scale of the initial weights be “fixed” after a few iterations of
optimization?

• No! A deep network with poorly-chosen weights will never train (at least
with vanilla SGD)

4

0 10 20 30 40 50
Layer

10°2
10°1
100
101
102
103

A
ct

iv
at

io
n

no
rm

0 10 20 30 40 50
Layer

10°8
10°6
10°4
10°2
100
102
104

G
ra

di
en

t
no

rm

æ2 = 1/n æ2 = 2/n æ2 = 3/n

𝜎
2
= 3/𝑛⟹ NaN

𝜎
2
= 2/𝑛⟹ Works

𝜎
2
= 1/𝑛⟹ No progress

Initialization vs. optimization
The problem is even more fundamental, however: even when trained successfully,
the effects/scales present at initialization persist throughout training

5

0 20 40
Layer

102

A
ct

iv
at

io
n

no
rm

0 20 40
Layer

10°1

101

G
ra

di
en

t
no

rm
0 20 40

Layer

1.7

2.0

2.3

W
ei

gh
t

va
ri
an

ce

æ2 = 1.7/n æ2 = 2/n æ2 = 2.3/n

0 20 40
Layer

102

A
ct

iv
at

io
n

no
rm

0 20 40
Layer

100

G
ra

di
en

t
no

rm

0 20 40
Layer

1.7

2.0

2.3

W
ei

gh
t

va
ri
an

ce
æ2 = 1.7/n æ2 = 2/n æ2 = 2.3/n

Train to
5% error

on MNIST

Normalization
Initialization matters a lot for training, and can vary over the course of training to
no longer be “consistent” across layers / networks

But remember that a “layer” in deep networks can be any computation at all…

…let’s just add layers that “fix” the normalization of the activations to be whatever
we want!

6

Layer normalization
First idea: let’s normalize (mean zero and variance one) activations at each layer;
this is known as layer normalization

̂𝑧
𝑖+1

= 𝜎
𝑖
𝑊

𝑖

𝑇
𝑧
𝑖
+ 𝑏

𝑖

𝑧
𝑖+1

=
̂𝑧
𝑖+1

−𝐄[̂𝑧
𝑖+1

]

𝐕𝐚𝐫[̂𝑧
𝑖+1

] + 𝜖 1/2

Also common to add an additional scalar weight and bias to each term (only
changes representation e.g., if we put normalization prior to nonlinearity instead)

7

LayerNorm illustration
“Fixes” the problem of varying norms of layer activations (obviously)

In practice, for standard FCN, harder to train resulting networks to low loss
(relative norms of examples are a useful discriminative feature)

8

0 10 20 30 40 50
Layer

102

A
ct

iv
at

io
n

no
rm

(b
ef

or
e

no
rm

la
ye

r)

0 10 20 30 40 50
Layer

100

101

G
ra

di
en

t
no

rm

æ2 = 1/n æ2 = 2/n æ2 = 3/n

Batch normalization
An odd idea: let’s consider the matrix form of our updates

̂𝑍
𝑖+1

= 𝜎
𝑖
𝑍
𝑖
𝑊

𝑖
+ 𝑏

𝑖

𝑇

then layer normalization is equivalent to normalizing the rows of this matrix

What if, instead, we normalize it’s columns? This is called batch normalization, as
we are normalizing the activations over the minibatch

9

̂𝑍
(𝑖+1)

=

Normalize
(layer norm)

Normalize
(batch norm)̂𝑍

(𝑖+1)
=

Minibatch dependence
One oddity to BatchNorm is that it makes the predictions for each example
dependent on the entire batch

Common solution is to compute a running average of mean/variance for all
features at each layer ̂𝜇

𝑖+1
, �̂�

𝑖+1

2 , and at test time normalize by these quantities

𝑧
𝑖+1 𝑗

=

(̂𝑧
𝑖+1

)
𝑗
− (̂𝜇

𝑖+1
)
𝑗

(�̂�
𝑖+1

2
)
𝑗
+𝜖

1/2

10

Outline
Normalilzation

Regularization

Interaction of optimization, initialization, normalization, regularization

11

Regularization of deep networks
Typically deep networks (even the simple two layer network you wrote in the
homework) are overparameterized models: they contain more parameters
(weights) than the number of training examples

• This means (formally, under a few assumptions), that they are capable of
fitting the training data exactly

In “traditional” ML/statistical thinking (with a number of big caveats), this should
imply that the models will overfit the training set, and not generalize well
• … but they do generalize well to test examples
• … but not always (many larger models will often still overfit)

12

Regularization
Regularization is the process of “limiting the complexity of the function class” in
order to ensure that networks will generalize better to new data; typically occurs in
two ways in deep learning

Implicit regularization refers to the manner in which our existing algorithms (namely
SGD) or architectures already limit functions considered

• E.g., we aren’t actually optimizing over “all neural networks”, we are
optimizing over all neural networks considered by SGD, with a given
weight initialization

Explicit regularization refers to modifications made to the network and training
procedure explicitly intended to regularize the network

13

ℓ
2

 Regularization a.k.a. weight decay

Classically, the magnitude of a model’s parameters are often a reasonable proxy
for complexity, so we can minimize loss while also keeping parameters small

minimize
𝑊

1:𝐿

1

𝑚
∑

𝑖=1

𝑚

ℓ ℎ
𝑊

1:𝐿

𝑥
𝑖
, 𝑦

𝑖
+
𝜆

2
∑

𝑖=1

𝐿

𝑊
𝑖 2

2

Results in the gradient descent updates:
𝑊

𝑖
≔𝑊

𝑖
−𝛼∇

𝑊
𝑖

ℓ ℎ 𝑋 , 𝑦 − 𝛼𝜆𝑊
𝑖
= 1−𝛼𝜆 𝑊

𝑖
−𝛼∇

𝑊
𝑖

ℓ ℎ 𝑋 , 𝑦

I.e., at each iteration we shrink the weights by a factor (1 − 𝛼𝜆) before taking the
gradient step

14

Caveats of ℓ
2

 regularization

ℓ
2
 regularization is exceedingly common deep learning, often just rolled into the

optimization procedure as a “weight decay” term

However, recall our optimized networks with different initializations:

... Parameter magnitude may be a bad proxy for complexity in deep networks

15

0 20 40
Layer

102

A
ct

iv
at

io
n

no
rm

0 20 40
Layer

100

G
ra

di
en

t
no

rm

0 20 40
Layer

1.7

2.0

2.3

W
ei

gh
t

va
ri
an

ce

æ2 = 1.7/n æ2 = 2/n æ2 = 2.3/n

Dropout
Another common regularization strategy: randomly set some fraction of the
activations at each layer to zero

 ̂𝑧
𝑖+1

= 𝜎
𝑖
𝑊

𝑖

𝑇
𝑧
𝑖
+ 𝑏

𝑖

𝑧
𝑖+1 𝑗

={
̂𝑧
𝑖+1 𝑗

/(1 − 𝑝) with probability 1 − 𝑝

 0 with probability 𝑝

(Not unlike BatchNorm) seems very odd on first glance: doesn’t this massively
change the function being approximated?

16

Dropout as stochastic approximation
Dropout is frequently cast as making networks “robust” to missing activations (but
we don’t apply it at test time? … and why does this regularize network?)

Instructive to consider Dropout as bringing a similar stochastic approximation as
SGD to the setting of individual activations

1

𝑚
∑

𝑖=1

𝑚

ℓ(ℎ 𝑥
𝑖
, 𝑦

𝑖
) ⟹

1

𝐵
∑

𝑖∈𝐵

ℓ(ℎ 𝑥
𝑖
, 𝑦

𝑖
)

𝑧
𝑖+1

= 𝜎
𝑖

∑

𝑗=1

𝑛

𝑊
𝑗,:

𝑧
𝑖 𝑗

 ⟹ 𝑧
𝑖+1

= 𝜎
𝑖

𝑛

𝒫
∑

𝑗∈𝒫

𝑛

𝑊
𝑗,:

𝑧
𝑖 𝑗

17

Outline
Normalilzation

Regularization

Interaction of optimization, initialization, normalization, regularization

18

Many solutions … many more questions
Many design choices meant to ease optimization ability of deep networks
• Choice of optimizer learning rate / momentum
• Choice of weight initialization
• Normalization layer
• Reguarlization

And these don’t even include many other “tricks” we’ll cover in later lectures:
residual connections, learning rate schedules, others I’m likely forgetting

…you would be forgiven for feeling like the practice of deep learning is all about
flailing around randomly with lots of GPUs

19

These factors all (of
course) interact
with each other

BatchNorm: An illustrative example

20

BatchNorm: An illustrative example

21

“Here is what we know about batch norm as
a field. It works because it reduces internal
covariant shift. Wouldn't you like to know
why reducing internal covariant shift speeds
up gradient descent? Wouldn't you like to
see a theorem or an experiment? Wouldn't
you like to know, wouldn't you like to see
evidence that batch norm reduces internal
covariant shift? Wouldn't you like to know
what internal covariant shift is? Wouldn't you
like to see a definition of it?”

- Ali Rahimi (NeurIPS 2017 Test of Time Talk)

BatchNorm: An illustrative example

22

BatchNorm: An illustrative example

23

…
…

BatchNorm: Other benefits?

24

Running batch norm at test
time (what we told you not to

do, because it induces
minibatch dependence),

improves model performance
on out-of-distribution data

The ultimate takeaway message
I don’t want to give the impression that deep learning is all about random hacks:
there have been a lot of excellent scientific experimentation with all the above

But it is true that we don’t have a complete picture of how all the different
empirical tricks people use really work and interact

The “good” news is that in many cases, it seems to be possible to get similarly
good results with wildly different architectural and methodological choices

25

