Deep Learning Systems:
Algorithms and Implementation

Normalization and Regularization

J. Zico Kolter (this time) and Tiangi Chen
Carnegie Mellon University

Outline

Normalilzation
Regularization

Interaction of optimization, initialization, normalization, regularization

Outline

Normalilzation

Activation norm

Initialization vs. optimization

Suppose we choose W, ~ N (0,<), where (for a ReLU network) ¢ = 2...

n
Won't the the scale of the initial weights be “fixed” after a few iterations of

optimization”?

* No! A deep network with poorly-chosen weights will never train (at least
with vanilla SGD)

0% = 3/n => NaN

103_ e 104'

1021 5 10°1

10" - = 0] 2

100 51077 o° = 2/n = Works
10 8 10

N 5] 10—8:
1072 | | | | . 105 5

0 10 20 30 40 50 0 10 20 30 40 50 O = l/n —> NO progress
Layer Layer

o2 =1/n o =2/n o?=3/n

Initialization vs. optimization

The problem is even more fundamental, however: even when trained successfully,
the effects/scales present at initialization persist throughout training

2 10%; s 10' 3
c] - (g
.8 = e A~~~ —__ _: 2.0 WV\/\“A\/W\/\'\/V\’\/\/\
g 5 107!)
pras} © ‘T
< © ——— 2 1.7{ ANVBA ANV VMAN
0 20 40 0 20 40 0 20 40
Layer Layer Layer _rk61ir] t()
o?=1.7/n o?=2/n 0?=23/n o
5% error
on MNIST
£ 8 2.37 AMVWA NV MVMAAN
5 £ £
< e 10°4 ‘=
5 s 3
8 c 2 2.0 MAINA AV AVNAAN
S T] 0
) © 1 ‘D
< © Z 1.7 ANVAA ANV AMARNA
0 20 40 0 20 40 0 20 40 .

Layer Layer Layer

Normalization

Initialization matters a lot for training, and can vary over the course of training to
no longer be “consistent” across layers / networks

But remember that a “layer” in deep networks can be any computation at all...

...let’s just add layers that “fix” the normalization of the activations to be whatever
we want!

Layer normalization

First idea: let’s normalize (mean zero and variance one) activations at each layer;
this is known as layer normalization

P

21 =0;(Wlhz, +b,)
I Zip1 — Bz]
L Var(Z] + o)1

Also common to add an additional scalar weight and bias to each term (only
changes representation e.g., if we put normalization prior to nonlinearity instead)

LayerNorm illustration

“Fixes” the problem of varying norms of layer activations (obviously)

£ O |
5 & E 1N
CE 2 2 101 h
S5 10°4 = ;
+~ < (D]
=5 g
3¢ 5
SS) | | | | | | 10°4 , , , , ,
0 10 20 30 40 50 0 10 20 30 40 50
Layer Layer
— o?=1/n 0?=2/n —— o0>=3/n

In practice, for standard FCN, harder to train resulting networks to low loss
(relative norms of examples are a useful discriminative feature)

Batch normalization

An odd idea: let’s consider the matrix form of our updates

AN

Ziq =0,(Z;W;+ b))

then layer normalization is equivalent to normalizing the rows of this matrix

What if, instead, we normalize it’s columns? This is called batch normalization, as
we are normalizing the activations over the minibatch

— Normalize
(layer norm)

Normalize
(batch norm)

N>
N>

(2+1) (2+1)

Minibatch dependence

One oddity to BatchNorm is that it makes the predictions for each example
dependent on the entire batch

Common solution is to compute a running average of mean/variance for all

features at each layer i, Iy 67;2 1, and at test time normalize by these quantities

P

(Zz+1) (:uz—H)
<(H_l) _|_€)1/2

(Zz‘+1)j =

10

Regularization

Outline

11

Regularization of deep networks

Typically deep networks (even the simple two layer network you wrote in the
homework) are overparameterized models: they contain more parameters
(weights) than the number of training examples

* This means (formally, under a few assumptions), that they are capable of
fitting the training data exactly

In “traditional” ML/statistical thinking (with a number of big caveats), this should
Imply that the models will overfit the training set, and not generalize well

* ... but they do generalize well to test examples
... but not always (many larger models will often still overfit)

12

Regularization

Regularization is the process of “limiting the complexity of the function class” in
order to ensure that networks will generalize better to new data; typically occurs in

two ways in deep learning

Implicit reqularization refers to the manner in which our existing algorithms (namely
SGD) or architectures already limit functions considered

 E.g., we aren’t actually optimizing over “all neural networks”, we are
optimizing over all neural networks considered by SGD, with a given

weight initialization

Explicit reqularization refers to modifications made to the network and training
procedure explicitly intended to regularize the network

13

- Regularization a.k.a. weight decay

Classically, the magnitude of a model’s parameters are often a reasonable proxy
for complexity, so we can minimize loss while also keeping parameters small

m L
minimize l Zé(hWLL (x@), y(i)) + %ZHWZH%
1=1 1=1

Wl:L m

Results in the gradient descent updates:
W, =W, — onW/(h(X), y) —aAW, = (1 —al\)W, — aVW/(h(X),)

.e., at each iteration we shrink the weights by a factor (1 — a\) before taking the
gradient step

14

Caveats of /., regularization

¢ regularization is exceedingly common deep learning, often just rolled into the
optimization procedure as a “weight decay” term

However, recall our optimized networks with different initializations:

£ | > g 231 MW A M MAAN
S ; E =

. 2 100 <

2 102- |5] 2 2.01

s S ®

46] — (]

< 1 © = 1.7 AN INA A AMNAAA

0 20 40 0 20 40 0 20 40
Layer Layer Layer

... Parameter magnitude may be a bad proxy for complexity in deep networks

15

Dropout

Another common regularization strategy: randomly set some fraction of the
activations at each layer to zero

AN

21 =0;(Wlz, +b,)

(Zi01): = <2i+1>j/(1 —p) with probability 1 —p
A 0 with probability p

(Not unlike BatchNorm) seems very odd on first glance: doesn’t this massively
change the function being approximated??

16

Dropout as stochastic approximation

Dropout is frequently cast as making networks “robust” to missing activations (but
we don’t apply it at test time? ... and why does this regularize network?)

Instructive to consider Dropout as bringing a similar stochastic approximation as
SGD to the setting of individual activations

D), y) = S ())

n
Zitr1 — 0y (ZW) — Zit1 = 0 (ﬂzwj(zz)])

jEP

17

Outline

Interaction of optimization, initialization, normalization, regularization

18

Many solutions ... many more questions

Many design choices meant to ease optimization ability of deep networks

« Choice of optimizer learning rate / momentum
« Choice of weight initialization

« Normalization layer

* Reguarlization

=

S—

—

These factors all (of
course) interact
with each other

And these don’t even include many other “tricks” we’ll cover In later lectures:
residual connections, learning rate schedules, others I'm likely forgetting

...you would be forgiven for feeling like the practice of deep learning is all about

flailing around randomly with lots of GPUs

19

BatchNorm: An illustrative example

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
ization a part of the model architecture and performing the
normalization for each training mini-batch. Batch Nor-
malization allows us to use much higher learning rates and
be less careful about initialization. It also acts as a regu-
larizer, in some cases eliminating the need for Dropout.

Christian Szegedy
Google Inc., szegedy @google.com

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient than m computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

While stochastic gradient is simple and effective, it
requires careful tuning of the model hyper-parameters,
specifically the learning rate used in optimization, as well
as the initial values for the model parameters. The train-
ing is complicated by the fact that the inputs to each layer
are affected by the parameters of all preceding layers — so
that small changes to the network parameters amplify as
the network becomes deeper.

20

BatchNorm: An illustrative example

“Here is what we know about batch norm as
a field. It works because it reduces internal
covariant shift. Wouldn't you like to know
why reducing internal covariant shift speeds
up gradient descent? Wouldn't you like to
see a theorem or an experiment? Wouldn't
you like to know, wouldn't you like to see
evidence that batch norm reduces internal
covariant shift? Wouldn't you like to know
what internal covariant shift is? Wouldn't you
like to see a definition of it?”

- Ali Rahimi (NeurlPS 2017 Test of Time Talk)

21

BatchNorm: An illustrative example

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras* Andrew Ilyas* Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

22

BatchNorm: An illustrative example

GRADIENT DESCENT ON NEURAL NETWORKS TYPI-
CALLY OCCURS AT THE EDGE OF STABILITY

Jeremy Cohen Simran Kaur YuanzhiLi J.Zico Kolter! and Ameet Talwalkar?
Carnegie Mellon University and: 'Bosch AI 2 Determined Al
Correspondence to: jeremycohen@cmu.edu

K.1 RELATION TO SANTURKAR ET AL. (2018)

We have demonstrated that the sharpness hovers right at (or just above) the value 2/7 when both
BN and non-BN networks are trained using gradient descent at reasonable step sizes. Therefore, at
least in the case of full-batch gradient descent, it cannot be said that batch normalization decreases
the sharpness (i.e. improves the local L-smoothness) along the optimization trajectory.

56

- e mme—em ~eo b e — B e e Thharhade eI e - e ———m = e

for both the network with BN and the network without BN, the effective smoothness hovers right at
2/m. Therefore, we conclude that there is no evidence that the use of batch normalization improves
either the smoothness or the effective smoothness along the optimization trajectory. (That said, this
experiment possibly explains why the batch-normalized network permits training with larger step
sizes.)

23

BatchNorm: Other benefits?

TENT: FULLY TEST-TIME ADAPTATION
BY ENTROPY MINIMIZATION

Dequan Wang'* Evan Shelhamer?*T, Shaoteng Liu', Bruno Olshausen’, Trevor Darrell
dgwang@cs.berkeley.edu, shelhamer@google.com

UC Berkeley! Adobe Research?

5 Wl source 59.5% B norm 49.9% Mtent 44.0% ANT 50.2%

_ \ Running batch norm at test

time (what we told you not to
do, because it induces
minibatch dependence),

Error (%)

@@&3}\& Q%Oﬁi S KoQé&”&ﬁ;}\z&Q? & improves moldell perfo rmance
° N ¢ on out-of-distribution data

Figure 5: Corruption benchmark on ImageNet-C:
error for each type averaged over severity levels.
Tent improves on the prior state-of-the-art, adver-
sarial noise training (Rusak et al., 2020), by fully

test-time adaptation without altering training. o

The ultimate takeaway message

| don’t want to give the impression that deep learning is all about random hacks:

there have been a lot of excellent scientific experimentation with all the above

But it is true that we don’t have a complete picture of how all the different
empirical tricks people use really work and interact

The “good” news is that in many cases, it seems to be possible to get similarly
good results with wildly different architectural and methodological choices

25

