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Sequence modeling tasks
In the examples we have considered so far, we make predictions assuming each 
input output pair 𝑥 𝑖

, 𝑦
𝑖 is independent identically distributed (i.i.d.)

In practice, many cases where the input/output pairs are given in a specific 
sequence, and we need to use the information about this sequence to help us 
make predictions
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(or more commonly, 
denoting 𝑥

𝑡
as a 

whole vector)



Example: Part of speech tagging
Given a sequence of words, determine the part of speech of each word

A word’s part of speech depends on the context in which it is being used, not just 
on the word itself
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Example: speech to text
Given a audio signal (assume we even know the word boundaries, and map each 
segment to a fix-sized vector descriptor), determine the corresponding 
transcription

Again, context of the words is extremely important (see e.g., any bad speech 
recognition system that attempts to “wreck a nice beach”)
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Example: autoregressive prediction
A special case of sequential prediction where the elements to predict is the next 
element in the sequence

Common e.g., in time series forecasting, language modeling, and other use cases
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Recurrent neural networks
Recurrent neural networks (RNNs) maintain a hidden state over time, which is a 
function of the current input and previous hidden state
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How to train your RNN
Given a sequence of inputs and target outputs (𝑥

1
,… , 𝑥

𝑇
, 𝑦

1

⋆
,… , 𝑦

𝑇

⋆ ), we can 
train an RNN using backpropagation through time, which just involves “unrolling” 
the RNN over the length of the sequence, then relying mostly on autodiff
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opt = Optimizer(params = (W_hh, W_hx, W_yh, b_h, b_y))
h[0] = 0
l = 0
for t = 1,...,T:

h[t] = f(W_hh * h[t-1] + W_hx * x[t] + b_h)
y[t] = g(W_yh * h[t] + b_y)
l += Loss(y[t], y_star[t])

l.backward()
opt.step()



Stacking RNNs
Just like normal neural networks, 
RNNs can be stacked together, 
treating the hidden unit of one layer 
as the input to the next layer, to form 
“deep” RNNs

Practically speaking, tends to be less 
value in “very deep” RNNs than for 
other architectures

11



Exploding activations/gradients
The challenge for training RNNs is similar to that of training deep MLP networks

Because we train RNNs on long sequences, if the weights/activation of the RNN 
are scaled poorly, the hidden activations (and therefore also the gradients) will 
grow unboundedly with sequence length
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Vanishing activation/gradients
Similarly, if weights are too small then information from the inputs will quickly 
decay with time (and it is precisely the “long range” dependencies that we would 
often like to model with sequence models)
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Alternative Activations
One obvious problem with the ReLU is that it can grow unboundedly; does using 
bounded activations “fix” this problem?

No … creating large enough weights to not cause activations/gradients to vanish 
requires being in the “saturating” regions of the activations, where gradients are 
very small ⟹ still have vanishing gradients
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Long short term memory RNNs
Long short term memory (LSTM) cells are a particular form of hidden unit update 
that avoids (some of) the problems of vanilla LSTMs

Step 1: Divide the hidden unit into two components, called (confusingly) the 
hidden state and the cell state
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Long short term memory RNNs
Step 2: Use a very specific formula to update the hidden state and cell state 
(throwing in some other names, like “forget gate”, “input gate”, “output gate” for 
good measure)
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Why do LSTMs work?
There have been a seemingly infinite number of papers / blog posts about 
“understanding how LSTMs work” (I find most of them rather unhelpful)
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Some famous LSTMs
A notably famous blog post in the history of LSTMs:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Andrej’s blog post

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Some famous LSTMs
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/*
* Increment the size file of the new incorrect 
UI_FILTER group information
* of the size generatively.
*/
static int indicate_policy(void)
{
int error;
if (fd == MARN_EPT) {
/*
* The kernel blank will coeld it to userspace.
*/
if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;

goto bail;
}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;

…

Generation from character-by-character 
autoregressive model trained on Linux source code

… trained on Latex source code
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Sequence-to-sequence models
To give you a short glimpse of the kind 
of things you can do with RNNs/LSTMs 
beyond “simple” sequence prediction, 
consider the task of trying to translate 
between languages

Can concatenate two RNNs together, 
one that “only” processes the sequence 
to create a final hidden state (i.e., no 
loss function); then a section that takes 
in this initial hidden state, and “only” 
generates a sequence
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Translating language is difficult <STOP>

Traducir un idioma es difícil <STOP>



Bidirectional RNNs
RNNs can use only the sequence 
information up until time 𝑡 to predict 𝑦

𝑡

• This is sometimes desirable (e.g., 
autoregressive models)

• But sometime undesirable (e.g., 
language translation where we want 
to use “whole” input sequence)

Bi-directional RNNs: stack a forward-
running RNN with a backward-running 
RNN: information from the entire sequence 
to propagates to the hidden state
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