Deep Learning Systems:
Algorithms and Implementation

Sequence Modeling and Recurrent Networks

Fall 2022
J. Zico Kolter (this time) and Tiangi Chen
Carnegie Mellon University

Outline

Sequence modeling
Recurrent neural networks

LSTMs

Beyond "simple” sequential models

Outline

Sequence modeling

Sequence modeling tasks

In the examples we have considered so far, we make predictions assuming each
input output pair ¥, y'?) is independent identically distributed (i.i.d.)

In practice, many cases where the input/output pairs are given in a specific
sequence, and we need to use the information about this sequence to help us
make predictions

(or more commonly,
denoting x, as a
whole vector)

Example: Part of speech tagging

Given a sequence of words, determine the part of speech of each word

[DT J [JJ J [JJ J [NN J [VBD]
R R R
(e oo e o o} o Joo{ et |

A word’s part of speech depends on the context in which it is being used, not just
on the word itself

Example: speech to text

Given a audio signal (assume we even know the word boundaries, and map each
segment to a fix-sized vector descriptor), determine the corresponding

transcription

Deep Learning Systems Algorithms and Implementation

Again, context of the words is extremely important (see e.g., any bad speech
recognition system that attempts to “wreck a nice beach”)

Example: autoregressive prediction

A special case of sequential prediction where the elements to predict is the next
element in the sequence

quick brown fox jumped over

R R R N
(e Foof i oof o | ox J>{fomoes

Common e.g., in time series forecasting, language modeling, and other use cases

Outline

Recurrent neural networks

Recurrent neural networks

Recurrent neural networks (RNNs) maintain a hidden state over time, which is a
function of the current input and previous hidden state

hy = f(Whhht 1+ Wyt +0y)

where f and g are activation
functions, Wp,;,, Wi, W, are

weights and b;,, b,, are bias terms

How to train your RNN

Given a sequence of inputs and target outputs (x4, ..., T, Y3, --- , Y7), We Can

train an RNN using backpropagation through time, which just involves “unrolling”

the RNN over the length of the sequence, then relying mostly on autodiff

opt = Optimizer(params = (W_hh, w_hx, w_yh, b_h, b_y))
h[0] =
1 =0
for t =1,...,T:
h[t] = f(w_hh * h[t-1] + w_hx * x[t] + b_h)
ylt] = glw_yh * h[t] + b_y)
1 += Loss(y[t], y_star[t])
1.backward()
opt.step()

10

Stacking RNNs

Just like normal neural networks,
RNNs can be stacked together,
treating the hidden unit of one layer
as the input to the next layer, to form
“deep” RNNs

Practically speaking, tends to be less
value in “very deep” RNNs than for
other architectures

11

Exploding activations/gradients

The challenge for training RNNs is similar to that of training deep MLP networks

Because we train RNNs on long sequences, if the weights/activation of the RNN
are scaled poorly, the hidden activations (and therefore also the gradients) will
grow unboundedly with sequence length

10% Single layer RNN with RelLU
activations, using weight initialization

Wyn ~ N(0,3/n)

H

S
=
1

Norm of hidden unit ||h]|2

—_

]
[N}
1

Recall that 0% = 2/n was the “proper”
; = o . = Initialization for ReLU activations

Time step ¢

12

Vanishing activation/gradients

Similarly, if weights are too small then information from the inputs will quickly
decay with time (and it is precisely the “long range” dependencies that we would
often like to model with sequence models)

—_

)
—
1

Single layer RNN with RelLU
activations, using weight initialization

Whh ~ N(O, 15/”)

—_
T
W

—_
3
Nej

—_

=
—_
S

Non-zero input only provided here for
time 1, showing decay of information

0 50 100 150 200 about this input over time
Time step ¢

Norm of hidden unit ||h||2

—_

=
—
Ne

13

Alternative Activations

One obvious problem with the RelU is that it can grow unboundedly; does using
bounded activations “fix” this problem?

=11 1
=l 1 = et —e "
I sigmoid(zx) = < 01 tanh(z) =
bag 1l+e 2 = eT b e~
RZHIRE : : —1 : ;
—5 0 5) —5 0 5
i i

No ... creating large enough weights to not cause activations/gradients to vanish

requires being In the “saturating” regions of the activations, where gradients are
very small = still have vanishing gradients

14

LSTMs

Outline

15

Long short term memory RNNs

Long short term memory (LSTM) cells are a particular form of hidden unit update
that avoids (some of) the problems of vanilla LSTMs

Step 1: Divide the hidden unit into two components, called (confusingly) the
hidden state and the cell state

16

Long short term memory RNNs

Step 2: Use a very specific formula to update the hidden state and cell state

(throwing in some other names, like “forget gate”, “input gate”, “output gate” for
good measure)
"1, sigmoid
sigmoid
— /i 5 (Winhi—1 + Wy,x, +by)
g tanh
ho h1 ho hs : :
......... Ly L |0y _ &gmo;d
Co C1 C2 C3 Ct =Cp g0 fp+ipog,
— . = tanh(c,) o o,
vlelololy

17

Why do LSTMs work?

There have been a seemingly infinite number of papers / blog posts about
“understanding how LSTMs work” (I find most of them rather unhelpful)

sigmoid
sigmoid

The key is this line here:

« We form ¢, by scaling down ¢,_
(remember, f, isin [0,1]™), then adding a
term to it

* |Importantly, “saturating” sigmoid
activation for f, at 1 would just pass
through ¢,;_; untouched

« — For a wide(r) range of weights,
LSTMs don’t suffer vanishing gradients

18

Some famous LSTMs

A notably famous blog post in the history of LSTMSs:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sepp Hochreiter X Citations per year /|

Institute for Machine Learning, Johannes Ke
Verified email at ml.jku.at - Homepage

24000

Machine Learning Deep Learning Artifici

18000
12000

Andrej’s blog post I
I 6000

12 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

19

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

ome famous LSTMs

/*
* Increment the size file of the new incorrect
UI FILTER group information
* of the size generatively.
*/
static int indicate policy(void)
{
int error;
if (fd == MARN EPT) {
/*
* The kernel blank will coeld it to userspace.
*/
if (ss->segment < mem total)
unblock graph and set blocked();
else
ret = 1;
goto bail;
}
segaddr = in SB(in.addr);
selector = seqg / 16;
setup works = true;

For @,,.. . Where £,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schypps and U — U is the fibre category of S in U in Section, ?? and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U =JU: xs, Us

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox , is a scheme where ,2’, s” € S’ such that Ox »» = O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S")
and we win. 0
To prove study we see that F|y is a covering of X”, and 7; is an object of Fxys for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular 7 = U/F we have to show that

= -

M® =I* ®gpec(k) Os.s —ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7 . (Sch/S) tpps

and

V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. (m]
The result for prove any open covering follows from the less of Example ??. It may
replace S by Xpaces,étale Which gives an open subspace of X and T equal to Szar.,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) =T'(X,0x.0y)-

When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is sur
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU =[[,_, Ui be the scheme X over
S at the schemes X; = X and U = lim; X;.

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Fx,..0

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;s. Set T =
Ji CT),. Since I" C I™ are nonzero over ig < p is a subset of T 0 o Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that
D(Ox+) = Ox(D)

where K is an F-algebra where d,,4, is a scheme over S. m]

Generation from character-by-character

autoregressive model trained on Linux source code

... trained on Latex source code

20

Beyond "simple” sequential models

Outline

21

Sequence-to-sequence models

To give you a short glimpse of the kind
of things you can do with RNNs/LSTMs
beyond “simple” sequence prediction,

(o) (o)) (o) (o) (=)

consider the task of trying to translate X x 5 x X x
between languages (0 Jof 1 Jof m o m o e Foof
Can concatenate two RNNs together,

one that “only” processes the sequence @ Iff ! }ff ! - ! : |

to create a final hidden state (i.e., no
loss function); then a section that takes
In this initial hidden state, and “only”
generates a sequence

—
S—
(2]
|
M
o
=
(@]
=
==
|
MY
A
0]
|
]
Y
\Y
—

[Translating] [Ianguage

22

Bidirectional RNNs

RNNs can use only the sequence
information up until time ¢ to predict y,

 This is sometimes desirable (e.g.,
autoregressive models)

« But sometime undesirable (e.qg.,
language translation where we want
to use “whole” input sequence)

Bi-directional RNNs: stack a forward-
running RNN with a backward-running
RNN: information from the entire sequence
to propagates to the hidden state

23

